Satellite-Based Probabilistic Assessment of Soil Moisture Using C-Band Quad-Polarized RISAT1 Data

被引:0
|
作者
Pal, Manali [1 ]
Maity, Rajib [2 ,3 ]
Suman, Mayank [1 ]
Das, Sarit Kumar [4 ]
Patel, Parul [5 ]
Srivastava, Hari Shanker [6 ]
机构
[1] IIT Kharagpur, Sch Water Resources, Kharagpur 721302, W Bengal, India
[2] IIT Kharagpur, Dept Civil Engn, Kharagpur 721302, W Bengal, India
[3] Karlsruhe Inst Technol, Campus Alpin IMK IFU, Garmisch Partenkirchen, Germany
[4] IIT Roorkee, Roorkee 247667, Uttar Pradesh, India
[5] Indian Space Res Org, Ctr Space Applicat, Ahmadabad 380015, Gujarat, India
[6] Indian Space Res Org, Agr & Soils Dept, Indian Inst Remote Sensing, Dehra Dun 248001, India
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2017年 / 55卷 / 03期
关键词
Backscattering coefficients; copula; radar imaging satellite1 (RISAT1); supervised principal component analysis (SPCA); RADARSAT-1 SAR DATA; HYDROLOGICAL PARAMETERS; SURFACE-ROUGHNESS; RETRIEVAL; MODEL; BACKSCATTERING; STATISTICS; DEPENDENCE; SCATTERING; COPULAS;
D O I
10.1109/TGRS.2016.2623378
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper attempts to probabilistically estimate the surface soil moisture content (SMC) by using the synthetic aperture radar data provided by radar imaging satellite1. The novelty of this paper lies in: 1) developing a combined index to understand the role of all the backscattering coefficients with different polarization and soil texture information in influencing the SMC; 2) using normalized incidence angles, which enables the model to be applicable for different incidence angles; and 3) determination of uncertainty range of the estimated SMC. The dimensionality problem, which is frequently observed in the multivariate analysis, is reduced in the development of the combined index by the use of supervised principal component analysis (SPCA). The SPCA also ensures the maximum attainable association between the developed combined index and surface SMC above wilting point (WP). The association between the combined index and the surface SMC above WP is modeled through joint probability distribution by using the Frank copula. The model is developed and validated with the field soil moisture values over 334 monitoring points within the study area. The outcomes obtained by applying the proposed model indicate an encouraging potential of the model to be applied for bareland and vegetated land (< 30 cm height).
引用
收藏
页码:1351 / 1362
页数:12
相关论文
共 50 条
  • [2] Soil Moisture Retrieval Using Quad-Polarized SAR Data from Radar Imaging Satellite 1 (RISAT1) Through Artificial Intelligence-Based Soft Computing Techniques
    Manali Pal
    Rajib Maity
    Journal of the Indian Society of Remote Sensing, 2019, 47 : 1671 - 1682
  • [3] Initial results using RISAT-1 C-band SAR data
    Chakraborty, Manab
    Panigrahy, Sushma
    Rajawat, A. S.
    Kumar, Raj
    Murthy, T. V. R.
    Haldar, Dipanwita
    Chakraborty, Abhisek
    Kumar, Tanumi
    Rode, Sneha
    Kumar, Hrishikesh
    Mahapatra, Manik
    Kundu, Sanchayita
    CURRENT SCIENCE, 2013, 104 (04): : 490 - 501
  • [4] Initial results using RISAT-1 C-band SAR data
    Chakraborty, M. (manab@sac.isro.gov.in), 1600, Indian Academy of Sciences (104):
  • [5] Model-based Surface Soil Moisture (SSM) retrieval algorithm using multi-temporal RISAT-1 C-band SAR data
    Pandey, Dharmendra Kr.
    Maity, Saroj
    Bhattacharya, Bimal
    Misra, Arundhati
    LAND SURFACE AND CRYOSPHERE REMOTE SENSING III, 2016, 9877
  • [6] Soil Moisture Retrieval Using SMAP L-Band Radiometer and RISAT-1 C-Band SAR Data in the Paddy Dominated Tropical Region of India
    Singh, Gurjeet
    Das, Narendra N.
    Panda, Rabindra K.
    Mohanty, Binayak P.
    Entekhabi, Dara
    Bhattacharya, Bimal K.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 10644 - 10664
  • [7] Artificial neural network for crop classification using C-band RISAT-1 satellite datasets
    P. Kumar
    R. Prasad
    V. N. Mishra
    D. K. Gupta
    S. K. Singh
    Russian Agricultural Sciences, 2016, 42 (3-4) : 281 - 284
  • [8] Soil moisture retrieval model by using RISAT-1, C-band data in tropical dry and sub-humid zone of Bankura district of India
    Das, Kousik
    Paul, Prabir Kumar
    EGYPTIAN JOURNAL OF REMOTE SENSING AND SPACE SCIENCES, 2015, 18 (02): : 297 - 310
  • [9] Estimation of Coastal Bathymetry Using RISAT-1 C-Band Microwave SAR Data
    Mishra, Manoj K.
    Ganguly, Debojyoti
    Chauhan, Prakash
    Ajai
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (03) : 671 - 675
  • [10] Soil Moisture Estimation Using Atmospherically Corrected C-Band InSAR Data
    Mira, Nuno Cirne
    Catalao, Joao
    Nico, Giovanni
    Mateus, Pedro
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60