Performance-optimized hierarchical models predict neural responses in higher visual cortex

被引:1010
作者
Yamins, Daniel L. K. [1 ,2 ]
Hong, Ha [1 ,2 ,3 ]
Cadieu, Charles F. [1 ,2 ]
Solomon, Ethan A. [1 ,2 ]
Seibert, Darren [1 ,2 ]
DiCarlo, James J. [1 ,2 ]
机构
[1] MIT, Dept Brain & Cognit Sci, Cambridge, MA 02139 USA
[2] MIT, McGovern Inst Brain Res, Cambridge, MA 02139 USA
[3] MIT, Inst Med Engn & Sci, Harvard MIT Div Hlth Sci & Technol, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
computational neuroscience; computer vision; array electrophysiology; OBJECT RECOGNITION; SHAPE SELECTIVITY; INVARIANCE; INFORMATION; POPULATION; V4;
D O I
10.1073/pnas.1403112111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ventral visual stream underlies key human visual object recognition abilities. However, neural encoding in the higher areas of the ventral stream remains poorly understood. Here, we describe a modeling approach that yields a quantitatively accurate model of inferior temporal (IT) cortex, the highest ventral cortical area. Using high-throughput computational techniques, we discovered that, within a class of biologically plausible hierarchical neural network models, there is a strong correlation between a model's categorization performance and its ability to predict individual IT neural unit response data. To pursue this idea, we then identified a high-performing neural network that matches human performance on a range of recognition tasks. Critically, even though we did not constrain this model to match neural data, its top output layer turns out to be highly predictive of IT spiking responses to complex naturalistic images at both the single site and population levels. Moreover, the model's intermediate layers are highly predictive of neural responses in the V4 cortex, a midlevel visual area that provides the dominant cortical input to IT. These results show that performance optimization-applied in a biologically appropriate model class-can be used to build quantitative predictive models of neural processing.
引用
收藏
页码:8619 / 8624
页数:6
相关论文
共 37 条
  • [1] [Anonymous], 2003, The Visual Neurosciences
  • [2] [Anonymous], 2009, FDN TRENDS MACHINE L
  • [3] Underlying principles of visual shape selectivity in posterior inferotemporal cortex
    Brincat, SL
    Connor, CE
    [J]. NATURE NEUROSCIENCE, 2004, 7 (08) : 880 - 886
  • [4] Cadieu C, 2013, INT C LEARN REPR 201
  • [5] A model of V4 shape selectivity and invariance
    Cadieu, Charles
    Kouh, Minjoon
    Pasupathy, Anitha
    Connor, Charles E.
    Riesenhuber, Maximilian
    Poggio, Tomaso
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2007, 98 (03) : 1733 - 1750
  • [6] Do we know what the early visual system does?
    Carandini, M
    Demb, JB
    Mante, V
    Tolhurst, DJ
    Dan, Y
    Olshausen, BA
    Gallant, JL
    Rust, NC
    [J]. JOURNAL OF NEUROSCIENCE, 2005, 25 (46) : 10577 - 10597
  • [7] Transformation of shape information in the ventral pathway
    Connor, Charles E.
    Brincat, Scott L.
    Pasupathy, Anitha
    [J]. CURRENT OPINION IN NEUROBIOLOGY, 2007, 17 (02) : 140 - 147
  • [8] Untangling invariant object recognition
    DiCarlo, James J.
    Cox, David D.
    [J]. TRENDS IN COGNITIVE SCIENCES, 2007, 11 (08) : 333 - 341
  • [9] How Does the Brain Solve Visual Object Recognition?
    DiCarlo, James J.
    Zoccolan, Davide
    Rust, Nicole C.
    [J]. NEURON, 2012, 73 (03) : 415 - 434
  • [10] Domain specificity in visual cortex
    Downing, P. E.
    Chan, A. W. -Y.
    Peelen, M. V.
    Dodds, C. M.
    Kanwisher, N.
    [J]. CEREBRAL CORTEX, 2006, 16 (10) : 1453 - 1461