Perturbations of Moore-Penrose Metric Generalized Inverses of Linear Operators in Banach Spaces

被引:16
|
作者
Ma, Hai Feng [1 ]
Sun, Shuang [1 ]
Wang, Yu Wen [1 ]
Zheng, Wen Jing [2 ]
机构
[1] Harbin Normal Univ, Sch Math Sci, Harbin 150025, Peoples R China
[2] Hulunbuir Coll, Dept Math, Hailar 021008, Peoples R China
基金
美国国家科学基金会;
关键词
Banach space; Moore-Penrose metric generalized inverse; perturbation; SELECTIONS;
D O I
10.1007/s10114-014-3340-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the perturbations of the Moore-Penrose metric generalized inverses of linear operators in Banach spaces are described. The Moore-Penrose metric generalized inverse is homogeneous and nonlinear in general, and the proofs of our results are different from linear generalized inverses. By using the quasi-additivity of Moore-Penrose metric generalized inverse and the theorem of generalized orthogonal decomposition, we show some error estimates of perturbations for the single-valued Moore-Penrose metric generalized inverses of bounded linear operators. Furthermore, by means of the continuity of the metric projection operator and the quasi-additivity of Moore-Penrose metric generalized inverse, an expression for Moore-Penrose metric generalized inverse is given.
引用
收藏
页码:1109 / 1124
页数:16
相关论文
共 50 条
  • [1] Perturbations of Moore-Penrose metric generalized inverses of linear operators in Banach spaces
    Hai Feng Ma
    Shuang Sun
    YuWen Wang
    Wen Jing Zheng
    Acta Mathematica Sinica, English Series, 2014, 30 : 1109 - 1124
  • [2] Perturbations of Moore–Penrose Metric Generalized Inverses of Linear Operators in Banach Spaces
    Hai Feng MA
    Shuang SUN
    Yu Wen WANG
    Wen Jing ZHENG
    Acta Mathematica Sinica(English Series), 2014, 30 (07) : 1109 - 1124
  • [3] PERTURBATION ANALYSIS FOR THE MOORE-PENROSE METRIC GENERALIZED INVERSE OF CLOSED LINEAR OPERATORS IN BANACH SPACES
    Du, Fapeng
    Chen, Jianlong
    ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (02): : 240 - 253
  • [4] A NEW PERTURBATION THEOREM FOR MOORE-PENROSE METRIC GENERALIZED INVERSE OF BOUNDED LINEAR OPERATORS IN BANACH SPACES
    王紫
    王玉文
    Acta Mathematica Scientia, 2017, (06) : 1619 - 1631
  • [5] A NEW PERTURBATION THEOREM FOR MOORE-PENROSE METRIC GENERALIZED INVERSE OF BOUNDED LINEAR OPERATORS IN BANACH SPACES
    Wang, Zi
    Wang, Yuwen
    ACTA MATHEMATICA SCIENTIA, 2017, 37 (06) : 1619 - 1631
  • [6] PERTURBATION ANALYSIS FOR THE MOORE-PENROSE METRIC GENERALIZED INVERSE OF BOUNDED LINEAR OPERATORS
    Du, Fapeng
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (04): : 100 - 114
  • [7] PERTURBATION BOUNDS FOR THE MOORE-PENROSE METRIC GENERALIZED INVERSE IN SOME BANACH SPACES
    Cao, Jianbing
    Zhang, Wanqin
    ANNALS OF FUNCTIONAL ANALYSIS, 2018, 9 (01): : 17 - 29
  • [8] Perturbation of the Moore-Penrose Metric Generalized Inverse in Reflexive Strictly Convex Banach Spaces
    Cao, Jian Bing
    Zhang, Wan Qin
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (06) : 725 - 735
  • [9] Perturbation Analysis of Moore-Penrose Quasi-linear Projection Generalized Inverse of Closed Linear Operators in Banach Spaces
    Wang, Zi
    Wu, Bo Ying
    Wang, Yu Wen
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (06) : 699 - 714
  • [10] Representations for Moore-Penrose inverses in Hilbert spaces
    Wei, YM
    Ding, J
    APPLIED MATHEMATICS LETTERS, 2001, 14 (05) : 599 - 604