On the sum of a narrow and a compact operators

被引:8
作者
Mykhaylyuk, Volodymyr [1 ]
机构
[1] Chernivtsi Natl Univ, Dept Appl Math, UA-58012 Chernovtsy, Ukraine
关键词
Narrow operators; Compact operators;
D O I
10.1016/j.jfa.2014.01.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our main technical tool is a principally new property of compact narrow operators which works for a domain space without an absolutely continuous norm. It is proved that for every Kothe F-space X and for every locally convex F-space Y the sum T-1 + T-2 of a narrow operator T-1 : X -> Y and a compact narrow operator T-2 : X -> Y is a narrow operator. This gives a positive answers to questions asked by M. Popov and B. Randrianantoanina [6, Problems 5.6 and 11.63]. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:5912 / 5920
页数:9
相关论文
共 9 条
  • [1] [Anonymous], MAT FIZ ANAL GEOM
  • [2] Kadets V.M., 1991, TRANS MATH MONOGR AM, V86
  • [3] A lattice approach to narrow operators
    Maslyuchenko, Olexandr V.
    Mykhaylyuk, Volodymyr V.
    Popov, Mykhaylo M.
    [J]. POSITIVITY, 2009, 13 (03) : 459 - 495
  • [4] On sums of narrow operators on Kothe function spaces
    Mykhaylyuk, V. V.
    Popov, M. M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 404 (02) : 554 - 561
  • [5] Plichko A.M., 1990, Diss. Math. (Rozprawy Mat.), V306, P1
  • [6] Popov M., 2013, De Gruyter Stud. Math., V45
  • [7] Schaefer H., 1970, TOPOLOGICAL VECTOR S
  • [8] Schaefer HH., 1999, TOPOLOGICAL VECTOR S, DOI [10.1007/978-1-4612-1468-7, DOI 10.1007/978-1-4612-1468-7]
  • [9] Singer I., 1981, Bases in Banach spaces II