Bose-Hubbard dimers, Viviani's windows and pendulum dynamics

被引:15
作者
Graefe, Eva-Maria [1 ]
Korsch, Hans Juergen [2 ]
Strzys, Martin P. [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] TU Kaiserslautern, FB Phys, D-67653 Kaiserslautern, Germany
关键词
Bose-Hubbard dimer; Viviani's windows; Viviani curves; Euclidean spherical ellipses; semiclassical quantization; BODY APPROXIMATION METHODS; SOLVABLE MODEL; QUANTUM; VALIDITY;
D O I
10.1088/1751-8113/47/8/085304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The two-mode Bose-Hubbard model in the mean-field approximation is revisited emphasizing a geometric interpretation where the system orbits appear as intersection curves of a ( Bloch) sphere and a cylinder oriented parallel to the mode axis, which provide a generalization of Viviani's curve studied already in 1692. In addition, the dynamics is shown to agree with the simple mathematical pendulum. The areas enclosed by the generalized Viviani curves, the action integrals, which can be used to semiclassically quantize the N-particle eigenstates, are evaluated. Furthermore, the significance of the original Viviani curve for the quantum system is demonstrated.
引用
收藏
页数:16
相关论文
共 40 条
[1]   Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction -: art. no. 010402 [J].
Albiez, M ;
Gati, R ;
Fölling, J ;
Hunsmann, S ;
Cristiani, M ;
Oberthaler, MK .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)
[2]   Dynamics of a two-mode Bose-Einstein condensate beyond mean-field theory [J].
Anglin, JR ;
Vardi, A .
PHYSICAL REVIEW A, 2001, 64 (01) :9
[3]  
Bogoliubov N., 1947, J. Phys., V11, P23
[4]   Phase-Diffusion Dynamics in Weakly Coupled Bose-Einstein Condensates [J].
Boukobza, Erez ;
Chuchem, Maya ;
Cohen, Doron ;
Vardi, Amichay .
PHYSICAL REVIEW LETTERS, 2009, 102 (18)
[5]   The Mobius strip and Viviani's windows [J].
Caddeo, R ;
Montaldo, S ;
Piu, P .
MATHEMATICAL INTELLIGENCER, 2001, 23 (03) :36-39
[6]   Quantum dynamics in the bosonic Josephson junction [J].
Chuchem, Maya ;
Smith-Mannschott, Katrina ;
Hiller, Moritz ;
Kottos, Tsampikos ;
Vardi, Amichay ;
Cohen, Doron .
PHYSICAL REVIEW A, 2010, 82 (05)
[8]   VALIDITY OF MANY-BODY APPROXIMATION METHODS FOR A SOLVABLE MODEL .3. DIAGRAM SUMMATIONS [J].
GLICK, AJ ;
LIPKIN, HJ ;
MESHKOV, N .
NUCLEAR PHYSICS, 1965, 62 (02) :211-&
[9]   Semiclassical quantization of an N-particle Bose-Hubbard model [J].
Graefe, E. M. ;
Korsch, H. J. .
PHYSICAL REVIEW A, 2007, 76 (03)
[10]  
Graefe E-M, 2009, THESIS