Lanthanide-to-quantum dot Forster resonance energy transfer (FRET): Application for immunoassay

被引:59
作者
Goryacheva, O. A. [1 ]
Beloglazova, N. V. [1 ,2 ]
Vostrikova, A. M. [1 ]
Pozharov, M. V. [1 ]
Sobolev, A. M. [1 ]
Goryacheva, I. Yu. [1 ,3 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Inst Chem, Dept Gen & Inorgan Chem, Astrakhanskaya 83, Saratov 410012, Russia
[2] Univ Ghent, Fac Pharmaceut Sci, Lab Food Anal, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
[3] St Petersburg State Univ, Dept Analyt Chem, Inst Chem, Univ Sky Pr, St Petersburg 198504, Russia
基金
俄罗斯科学基金会;
关键词
Forster resonance energy transfer (FRET); Lanthanide ion complex; Quantum dot; immunoassay; antigen-antibody; interaction; TIME-RESOLVED FLUOROIMMUNOASSAY; COMPLEXES; LUMINESCENCE; DIAGNOSTICS; TERBIUM; NANOPARTICLE; ACCEPTORS; AGENTS;
D O I
10.1016/j.talanta.2016.11.054
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Forster resonance energy transfer (FRET) between lanthanide ion complexes (L) acting as donors and luminescent semiconductor quantum dots (QD) acting as acceptors is discussed in the terms of advantages and disadvantages for its application in immunoassay. (L)-QD-FRET is potentially a powerful tool that can be used to detect and confirm formation of immunocomplexes, but until now it had very limited practical analytical application. Therefore, the main aim of this review is to analyze all possibilities, advantages, and disadvantages of L-QD-FRET in immunoassay applications. Considering Land QD respectively applied as donor and acceptor, the most advantageous properties for analytical purposes are large decay time of L complexes and the high absorption of QD. L complexes extremely long decay times make it possible to directly detect FRET through enhancement of QDs decay time as a result of energy transfer. Very high QD absorption predetermines extremely large Forster radii (ca. 10 nm), which means that FRET can be utilized for proteins and protein complexes, such as antigen-antibody systems.
引用
收藏
页码:377 / 385
页数:9
相关论文
共 54 条
[1]   Emerging non-traditional Forster resonance energy transfer configurations with semiconductor quantum dots: Investigations and applications [J].
Algar, W. Russ ;
Kim, Hyungki ;
Medintz, Igor L. ;
Hildebrandt, Niko .
COORDINATION CHEMISTRY REVIEWS, 2014, 263 :65-85
[2]   Multiplexed Tracking of Protease Activity Using a Single Color of Quantum Dot Vector and a Time-Gated Forster Resonance Energy Transfer Relay [J].
Algar, W. Russ ;
Malanoski, Anthony P. ;
Susumu, Kimihiro ;
Stewart, Michael H. ;
Hildebrandt, Niko ;
Medintz, Igor L. .
ANALYTICAL CHEMISTRY, 2012, 84 (22) :10136-10146
[3]   Quantum Dots as Simultaneous Acceptors and Donors in Time-Gated Forster Resonance Energy Transfer Relays: Characterization and Biosensing [J].
Algar, W. Russ ;
Wegner, David ;
Huston, Alan L. ;
Blanco-Canosa, Juan B. ;
Stewart, Michael H. ;
Armstrong, Anika ;
Dawson, Philip E. ;
Hildebrandt, Niko ;
Medintz, Igor L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (03) :1876-1891
[4]  
Algar WR., 2013, FRET - Forster Reson. Energy Transf. From Theory to Appl, P475, DOI [10.1002/9783527656028.ch12, DOI 10.1002/9783527656028.CH12]
[5]   ANTENNA EFFECT IN LUMINESCENT LANTHANIDE CRYPTATES - A PHOTOPHYSICAL STUDY [J].
ALPHA, B ;
BALLARDINI, R ;
BALZANI, V ;
LEHN, JM ;
PERATHONER, S ;
SABBATINI, N .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1990, 52 (02) :299-306
[6]   ENERGY-TRANSFER LUMINESCENCE OF EUROPIUM(III) AND TERBIUM(III) CRYPTATES OF MACROBICYCLIC POLYPYRIDINE LIGANDS [J].
ALPHA, B ;
LEHN, JM ;
MATHIS, G .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1987, 26 (03) :266-267
[7]   Efficiency of Energy Transfer from Organic Dye Molecules to CdSe-ZnS Nanocrystals: Nanorods versus Nanodots [J].
Artemyev, Mikhail ;
Ustinovich, Elena ;
Nabiev, Igor .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (23) :8061-8065
[8]   Evaluating Quantum Dot Performance in Homogeneous FRET Immunoassays for Prostate Specific Antigen [J].
Bhuckory, Shashi ;
Lefebvre, Olivier ;
Qiu, Xue ;
Wegner, Karl David ;
Hildebrandt, Niko .
SENSORS, 2016, 16 (02)
[9]   Lanthanide-Based Luminescent Hybrid Materials [J].
Binnemans, Koen .
CHEMICAL REVIEWS, 2009, 109 (09) :4283-4374
[10]   Lanthanide Luminescence for Biomedical Analyses and Imaging [J].
Buenzli, Jean-Claude G. .
CHEMICAL REVIEWS, 2010, 110 (05) :2729-2755