Spatial and temporal regulation of GLUT4 translocation by flotillin-1 and caveolin-3 in skeletal muscle cells

被引:95
作者
Fecchi, Katia [1 ]
Volonte, Daniela [1 ]
Hezel, Michael P. [1 ]
Schmeck, Kevin [1 ]
Galbiati, Ferruccio [1 ]
机构
[1] Univ Pittsburgh, Sch Med, Dept Pharmacol, Pittsburgh, PA 15261 USA
关键词
caveolae; glucose transporter; insulin signaling; detergent-resistant microdomains;
D O I
10.1096/fj.05-4661fje
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Skeletal muscle tissue is one of the main sites where glucose uptake occurs in response to insulin. The glucose transporter type-4 (GLUT4) is primarily responsible for the insulin-stimulated increase in glucose uptake. Upon insulin stimulation, GLUT4 is recruited from intracellular reserves to the plasma membrane. The molecular mechanisms that regulate the translocation of GLUT4 to the sarcolemma remain to be fully identified. Here, we demonstrate that GLUT4 is localized to perinuclear stores that contain flotillin-1, a marker of lipid rafts, in skeletal muscle cells. Stimulation with insulin for 10 min results in the translocation of flotillin1/GLUT4-containing domains to the plasma membrane in a PI3K- and PKC zeta-dependent manner. We also demonstrate that caveolin-3, a marker of caveolae, is required for the insulin receptor-mediated activation of the PI3K- dependent pathway, which occurs 2 min after insulin stimulation. In fact, we demonstrate that lack of caveolin-3 significantly reduces insulin-stimulated glucose uptake in caveolin-3 null myotubes by inhibiting both PI3K and Akt, as well as the movement of GLUT4 to the plasma membrane. Interestingly, caveolin-3 moves away from the plasma membrane toward the cytoplasm 5 min after insulin stimulation and temporarily interacts with flotillin-1/GLUT4-containing domains before they reach the sarcolemma, with the consequent movement of the insulin receptor from caveolin-3-containing domains to flotillin-1-containing domains. Such translocation temporally matches the insulin-stimulated movement of Cbl and CrkII in flotillin-1/GLUT4-containing domains, as well as the activation of the GDP-GTP exchange factor C3G. Disruption of flotillin-1-based domains prevents the activation of C3G, movement of GLUT4 to the sarcolemma, and glucose uptake in response to insulin. Thus, the activation of the Cbl/C3G/TC10-dependent pathway, which occurs before flotillin-1/GLUT4-containing domains reach the plasma membrane, is flotillin-1 mediated and follows the activation of the PI3K- mediated signaling. Taken together, these results indicate that flotillin- 1 and caveolin-3 may regulate muscle energy metabolism through the spatial and temporal segregation of key components of the insulin signaling.
引用
收藏
页码:705 / +
页数:28
相关论文
共 77 条
[1]   APS, an adapter protein with a PH and SH2 domain, is a substrate for the insulin receptor kinase [J].
Ahmed, Z ;
Smith, BJ ;
Kotani, K ;
Wilden, P ;
Pillay, TS .
BIOCHEMICAL JOURNAL, 1999, 341 :665-668
[2]   Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha [J].
Alessi, DR ;
James, SR ;
Downes, CP ;
Holmes, AB ;
Gaffney, PRJ ;
Reese, CB ;
Cohen, P .
CURRENT BIOLOGY, 1997, 7 (04) :261-269
[3]   CAP defines a second signalling pathway required for insulin-stimulated glucose transport [J].
Baumann, CA ;
Ribon, V ;
Kanzaki, M ;
Thurmond, DC ;
Mora, S ;
Shigematsu, S ;
Bickel, PE ;
Pessin, JE ;
Saltiel, AR .
NATURE, 2000, 407 (6801) :202-207
[4]   Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins [J].
Bickel, PE ;
Scherer, PE ;
Schnitzer, JE ;
Oh, P ;
Lisanti, MP ;
Lodish, HF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (21) :13793-13802
[5]   IDENTIFICATION OF A NOVEL GENE ENCODING AN INSULIN-RESPONSIVE GLUCOSE TRANSPORTER PROTEIN [J].
BIRNBAUM, MJ .
CELL, 1989, 57 (02) :305-315
[6]   Caveolin-3 knockout mice show increased adiposity and whole body insulin resistance, with ligand-induced insulin receptor instability in skeletal muscle [J].
Capozza, F ;
Combs, TP ;
Cohen, AW ;
Cho, YR ;
Park, SY ;
Schubert, W ;
Williams, TM ;
Brasaemle, DL ;
Jelicks, LA ;
Scherer, PE ;
Kim, JK ;
Lisanti, MP .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2005, 288 (06) :C1317-C1331
[7]   A GLUCOSE-TRANSPORT PROTEIN EXPRESSED PREDOMINATELY IN INSULIN-RESPONSIVE TISSUES [J].
CHARRON, MJ ;
BROSIUS, FC ;
ALPER, SL ;
LODISH, HF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (08) :2535-2539
[8]   PHOSPHATIDYLINOSITOL 3-KINASE ACTIVATION IS REQUIRED FOR INSULIN STIMULATION OF PP70 S6 KINASE, DNA-SYNTHESIS, AND GLUCOSE-TRANSPORTER TRANSLOCATION [J].
CHEATHAM, B ;
VLAHOS, CJ ;
CHEATHAM, L ;
WANG, L ;
BLENIS, J ;
KAHN, CR .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (07) :4902-4911
[9]   Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10 [J].
Chiang, SH ;
Baumann, CA ;
Kanzaki, M ;
Thurmond, DC ;
Watson, RT ;
Neudauer, CL ;
Macara, IG ;
Pessin, JE ;
Saltiel, AR .
NATURE, 2001, 410 (6831) :944-948
[10]   Molecular and cellular biology of caveolae - Paradoxes and plasticities [J].
Couet, J ;
Li, SW ;
Okamoto, T ;
Scherer, PE ;
Lisanti, MP .
TRENDS IN CARDIOVASCULAR MEDICINE, 1997, 7 (04) :103-110