All-Nanowire Based Li-Ion Full Cells Using Homologous Mn2O3 and LiMn2O4

被引:149
作者
Wang, Yuhang [1 ]
Wang, Yehua [1 ]
Jia, Dingsi [1 ]
Peng, Zheng [1 ]
Xia, Yongyao [1 ]
Zheng, Gengfeng [1 ]
机构
[1] Fudan Univ, Dept Chem, Adv Mat Lab, Shanghai 200433, Peoples R China
基金
国家教育部博士点专项基金资助;
关键词
Lithium-ion battery; nanowire; Mn2O3; LiMn2O4; thin film battery; HIGH-CAPACITY; LITHIUM BATTERIES; CATHODE MATERIALS; ANODE MATERIAL; PERFORMANCE; SPINEL; NANOTUBES; MICROSPHERES; NANORODS; ARRAYS;
D O I
10.1021/nl4047834
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report an all-nanowire based flexible Li-ion battery full cell, using homologous Mn2O3 and LiMn2O4 nanowires for anodes and cathodes, respectively. The same precursors, MnOOH nanowires, are transformed from hydrothermally grown MnO2 nanoflakes and directly attached on Ti foils via reaction with poly(vinyl pyrrolidone). The Mn2O3 anode and LiMn2O4 cathode are subsequently formed by thermal annealing and reaction with lithium salt, respectively. The one-dimensional nanowire structures provide short lithium-ion diffusion path, good charge transport, and volume flexibility for Li+ intercalation/deintercalation, thus leading to good rate capability and cycling performance. As proof-of-concept, the Mn2O3 nanowire anode delivers an initial discharge capacity of 815.9 mA h g(-1) at 100 mA g(-1) and maintains a capacity of 502.3 mA h g(-1) after 100 cycles. The LiMn2O4 nanowire cathodes show a reversible capacity of 94.7 mA h g(-1) at 100 mA g(-1) and high capacity retention of similar to 96% after 100 cycles. Furthermore, a flexible Mn2O3//LiMn2O4 lithium ion full cell is fabricated, with an output voltage of >3 V, low thickness of 0.3 mm, high flexibility, and a specific capacity of 99 mA h g(-1) based on the total weight of the cathode material. It also exhibits good cycling stability with a capacity of similar to 80 mA h g(-1) after 40 charge/discharge cycles.
引用
收藏
页码:1080 / 1084
页数:5
相关论文
共 37 条
[1]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[2]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[3]   Pore-controlled synthesis of Mn2O3 microspheres for ultralong-life lithium storage electrode [J].
Chang, Liang ;
Mai, Liqiang ;
Xu, Xu ;
An, Qinyou ;
Zhao, Yunlong ;
Wang, Dandan ;
Feng, Xi .
RSC ADVANCES, 2013, 3 (06) :1947-1952
[4]   Porous Mn2O3 microsphere as a superior anode material for lithium ion batteries [J].
Deng, Yuanfu ;
Li, Zhanen ;
Shi, Zhicong ;
Xu, Hui ;
Peng, Feng ;
Chen, Guohua .
RSC ADVANCES, 2012, 2 (11) :4645-4647
[5]   SBA-15 derived carbon-supported SnO2 nanowire arrays with improved lithium storage capabilities [J].
Ding, Shujiang ;
Wang, Zhiyu ;
Madhavi, Srinivasan ;
Lou, Xiong Wen .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (36) :13860-13864
[6]   Hausmannite Mn3O4 nanorods:: synthesis, characterization and magnetic properties [J].
Du, Jin ;
Gao, Yongqian ;
Chai, Lanlan ;
Zou, Guifu ;
Li, Yue ;
Qian, Yitai .
NANOTECHNOLOGY, 2006, 17 (19) :4923-4928
[7]   Semiconductor Nanowires for Energy Conversion [J].
Hochbaum, Allon I. ;
Yang, Peidong .
CHEMICAL REVIEWS, 2010, 110 (01) :527-546
[8]   A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery [J].
Jung, Hun-Gi ;
Jang, Min Woo ;
Hassoun, Jusef ;
Sun, Yang-Kook ;
Scrosati, Bruno .
NATURE COMMUNICATIONS, 2011, 2
[9]   Spinel LiMn2O4 Nanorods as Lithium Ion Battery Cathodes [J].
Kim, Do Kyung ;
Muralidharan, P. ;
Lee, Hyun-Wook ;
Ruffo, Riccardo ;
Yang, Yuan ;
Chan, Candace K. ;
Peng, Hailin ;
Huggins, Robert A. ;
Cui, Yi .
NANO LETTERS, 2008, 8 (11) :3948-3952
[10]   Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems [J].
Lai, Xiaoyong ;
Halpert, Jonathan E. ;
Wang, Dan .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) :5604-5618