Pattern formation and interface pinch-off in rotating Hele-Shaw flows: A phase-field approach

被引:30
作者
Folch, R. [1 ]
Alvarez-Lacalle, E. [2 ]
Ortin, J. [3 ]
Casademunt, J. [3 ]
机构
[1] Univ Rovira & Virgili, Dept Enginyeria Quim, E-43007 Tarragona, Spain
[2] Univ Politecn Cataluna, Dept Fis Aplicada, E-08028 Barcelona, Spain
[3] Univ Barcelona, Dept ECM, E-08028 Barcelona, Spain
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 05期
关键词
pattern formation; rotational flow; viscosity; ARBITRARY VISCOSITY CONTRAST; SINGULARITY FORMATION; BREAKUP; MODEL; DYNAMICS;
D O I
10.1103/PhysRevE.80.056305
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Viscous fingering dynamics driven by centrifugal forcing is studied for arbitrary viscosity contrast. Theoretical methods, including exact solutions, and numerics based on a phase-field approach are used. Both confirm that pinch-off singularities in patterns originated from the centrifugally driven instability may occur spontaneously and be inherent to the two-dimensional Hele-Shaw dynamics. They are systematically more frequent for lower viscosity contrasts consistently with experimental evidence. The analytical insights provide an interpretation of this fact in terms of the asymptotic matching of the different regions of the fingering patterns. The phase-field numerical scheme is shown to be particularly adequate to elucidate the existence of finite-time singularities through the dependence of the singularity time on the interface thickness, in particular for varying viscosity contrast.
引用
收藏
页数:10
相关论文
共 7 条
  • [1] Pinch-off singularities in rotating Hele-Shaw flows at high viscosity contrast
    Alvarez-Lacalle, E.
    Casademunt, J.
    Eggers, J.
    PHYSICAL REVIEW E, 2009, 80 (05):
  • [2] Diffuse-interface approach to rotating Hele-Shaw flows
    Chen, Ching-Yao
    Huang, Yu-Sheng
    Miranda, Jose A.
    PHYSICAL REVIEW E, 2011, 84 (04):
  • [3] Pinch-off from a foam droplet in a Hele-Shaw cell
    Tani, Marie
    Kurita, Rei
    SOFT MATTER, 2022, 18 (11) : 2137 - 2142
  • [4] Geometric approach to stationary shapes in rotating Hele-Shaw flows
    Leandro, Eduardo S. G.
    Oliveira, Rafael M.
    Miranda, Jose A.
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (05) : 652 - 664
  • [5] Phase-field simulation of two-phase micro-flows in a Hele-Shaw cell
    Sun, Y
    Beckermann, C
    Computational Methods in Multiphase Flow III, 2005, 50 : 147 - 157
  • [6] A phase-field model of two-phase Hele-Shaw flow
    Cueto-Felgueroso, Luis
    Juanes, Ruben
    JOURNAL OF FLUID MECHANICS, 2014, 758 : 522 - 552
  • [7] Phase-field modeling of bubble growth and flow in a Hele-Shaw cell
    Sun, Y.
    Beckermann, C.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2010, 53 (15-16) : 2969 - 2978