Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission

被引:500
作者
Temelkuran, B
Hart, SD
Benoit, G
Joannopoulos, JD
Fink, Y
机构
[1] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[2] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nature01275
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Conventional solid-core optical fibres require highly transparent materials. Such materials have been difficult to identify owing to the fundamental limitations associated with the propagation of light through solids, such as absorption, scattering and nonlinear effects. Hollow optical fibres offer the potential to minimize the dependence of light transmission on fibre material transparency(1-3). Here we report on the design and drawing of a hollow optical fibre lined with an interior omnidirectional dielectric mirror(4). Confinement of light in the hollow core is provided by the large photonic bandgaps(5-7) established by the multiple alternating submicrometre-thick layers of a high-refractive-index glass and a low-refractive-index polymer. The fundamental and high-order transmission windows are determined by the layer dimensions and can be scaled from 0.75 to 10.6 mum in wavelength. Tens of metres of hollow photonic bandgap fibres for transmission of carbon dioxide laser light at 10.6 mum wavelength were drawn. The transmission losses are found to be less than 1.0 dB m(-1), orders of magnitude lower than those of the intrinsic fibre material, thus demonstrating that low attenuation can be achieved through structural design rather than high-transparency material selection.
引用
收藏
页码:650 / 653
页数:4
相关论文
共 30 条
  • [1] Allan DC, 2001, NATO SCI SER II-MATH, V563, P305
  • [2] Development of new near-infrared filters based on the "sandwich" polymer-chalcogenide glass-polymer composites
    Bormashenko, E
    Pogreb, R
    Pogreb, Z
    Sutovski, S
    [J]. OPTICAL ENGINEERING, 2001, 40 (05) : 661 - 662
  • [3] CHALCOGENIDE HOLLOW FIBERS
    BORNSTEIN, A
    CROITORU, N
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 1985, 77-8 : 1277 - 1280
  • [4] Analysis of air-guiding photonic bandgap fibers
    Broeng, J
    Barkou, SE
    Sondergaard, T
    Bjarklev, A
    [J]. OPTICS LETTERS, 2000, 25 (02) : 96 - 98
  • [5] Single-mode photonic band gap guidance of light in air
    Cregan, RF
    Mangan, BJ
    Knight, JC
    Birks, TA
    Russell, PS
    Roberts, PJ
    Allan, DC
    [J]. SCIENCE, 1999, 285 (5433) : 1537 - 1539
  • [6] Microstructured optical fiber devices
    Eggleton, BJ
    Kerbage, C
    Westbrook, PS
    Windeler, RS
    Hale, A
    [J]. OPTICS EXPRESS, 2001, 9 (13): : 698 - 713
  • [7] A dielectric omnidirectional reflector
    Fink, Y
    Winn, JN
    Fan, SH
    Chen, CP
    Michel, J
    Joannopoulos, JD
    Thomas, EL
    [J]. SCIENCE, 1998, 282 (5394) : 1679 - 1682
  • [8] Guiding optical light in air using an all-dielectric structure
    Fink, Y
    Ripin, DJ
    Fan, SH
    Chen, CP
    Joannopoulos, JD
    Thomas, EL
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 1999, 17 (11) : 2039 - 2041
  • [9] Modeling the fabrication of hollow fibers: Capillary drawing
    Fitt, AD
    Furusawa, K
    Monro, TM
    Please, CP
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2001, 19 (12) : 1924 - 1931
  • [10] A review of IR transmitting, hollow waveguides
    Harrington, JA
    [J]. FIBER AND INTEGRATED OPTICS, 2000, 19 (03) : 211 - 227