A Reconstruction Theorem for Riemannian Symmetric Spaces of Noncompact Type

被引:2
作者
Stenzel, Matthew B. [1 ]
机构
[1] Ohio State Univ, Newark, OH 43055 USA
关键词
Sampling theorem; Symmetric space of noncompact type; Spherical Fourier transform; Symmetric space of complex type; FOURIER-TRANSFORM; MANIFOLDS; PROOF;
D O I
10.1007/s00041-009-9090-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f be a rapidly decreasing radial function on a Riemannian symmetric space of noncompact type whose spherical Fourier transform has compact support. We prove a reconstruction theorem which recovers f from the values of an integral operator applied to f on a discrete subset. When G/K is of the complex type we prove a sampling formula recovering f from its own values on a discrete subset. We give explicit results for three dimensional hyperbolic space.
引用
收藏
页码:839 / 856
页数:18
相关论文
共 23 条
[1]   Real Paley-Wiener theorems for the inverse fourier transform on a Riemannian symmetric space [J].
Andersen, NB .
PACIFIC JOURNAL OF MATHEMATICS, 2004, 213 (01) :1-13
[2]   THE SPHERICAL FOURIER-TRANSFORM OF RAPIDLY DECREASING FUNCTIONS - A SIMPLE PROOF OF A CHARACTERIZATION DUE TO HARISH-CHANDRA, HELGASON, TROMBI, AND VARADARAJAN [J].
ANKER, JP .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 96 (02) :331-349
[3]  
[Anonymous], 1994, Mathematical Surveys and Monographs, DOI DOI 10.1090/SURV/039
[4]   ON THE C INFINITY CHEVALLEY THEOREM [J].
DADOK, J .
ADVANCES IN MATHEMATICS, 1982, 44 (02) :121-131
[5]   On sampling formulas on symmetric spaces [J].
Ebata, M ;
Eguchi, M ;
Koizumi, S ;
Kumahara, K .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2006, 12 (01) :1-15
[6]  
Ebata M., 2006, HIROSHIMA MATH J, V36, P125
[7]  
Feichtinger, 2004, Contemp. Math., V345, P137
[8]  
Feichtinger H., 2005, Sampling Theory in Signal and Image Processing, V4, P107
[9]  
Helgason S., 1979, Differential Geometry, Lie Groups, and Symmetric Spaces
[10]  
Helgason S., 1984, Groups and geometric analysis