Ultrahigh Electricity Generation from Low-Frequency Mechanical Energy by Efficient Energy Management

被引:199
作者
Wang, Zhao [1 ]
Liu, Wenlin [1 ]
He, Wencong [1 ]
Guo, Hengyu [1 ]
Long, Li [1 ]
Xi, Yi [1 ]
Wang, Xue [1 ]
Liu, Anping [1 ]
Hu, Chenguo [1 ]
机构
[1] Chongqing Univ, Dept Appl Phys, Chongqing Key Lab Soft Condensed Matter Phys & Sm, State Key Lab Power Transmiss Equipment & Syst Se, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
TRIBOELECTRIC NANOGENERATOR; OUTPUT POWER; DESIGN; TRANSFORMER;
D O I
10.1016/j.joule.2020.12.023
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An efficient energy-management strategy is critical for the energy utilization of triboelectric nanogenerators (TENGs), of which the switch and convertor are two key parts. However, common switches only withstand limited voltage (similar to 10(2) V), while the convertors for electrostatic energy are diversely designed without standard principles. Here, we report a simple, tunable auto-spark switch to achieve energy accumulation and fast release and develop a standard design procedure of matched transformer for electrostatic energy conversion. We establish an ultrahigh voltage (over 7.5 kV) energy-management system for TENG. Ultrahigh output charge of 660 mu C per cycle, pulsed power density of 11.13 kW m(-2), and constant power density of 291 mW m(-2) at 3 Hz are all achieved. With this energy-management unit, TENGs can continuously power a wireless sensors network at 1 Hz. This energy-management approach enables TENGs to present a breakthrough in practical applications.
引用
收藏
页码:441 / 455
页数:15
相关论文
共 42 条
[1]  
Bao DC, 2017, J SEMICOND, V38, DOI 10.1088/1674-4926/38/9/095001
[2]   Calculation of the townsend discharge coefficients and the Paschen curve coefficients [J].
Burm, K. T. A. L. .
CONTRIBUTIONS TO PLASMA PHYSICS, 2007, 47 (03) :177-182
[3]   Largely enhancing the output power and charging efficiency of electret generators using position-based auto-switch and passive power management module [J].
Cao, Zeyuan ;
Wang, Shiwen ;
Bi, Mingzhao ;
Wu, Zibo ;
Ye, Xiongying .
NANO ENERGY, 2019, 66
[4]   A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and self-powered wireless sensing system [J].
Chen, Xin ;
Gao, Lingxiao ;
Chen, Junfei ;
Lu, Shan ;
Zhou, Hong ;
Wang, Tingting ;
Wang, Aobo ;
Zhang, Zhifei ;
Guo, Shifeng ;
Mu, Xiaojing ;
Wang, Zhong Lin ;
Yang, Ya .
NANO ENERGY, 2020, 69
[5]   Managing and maximizing the output power of a triboelectric nanogenerator by controlled tip-electrode air-discharging and application for UV sensing [J].
Cheng, Gang ;
Zheng, Haiwu ;
Yang, Feng ;
Zhao, Lei ;
Zheng, Mingli ;
Yang, Junjie ;
Qin, Huaifang ;
Du, Zuliang ;
Wang, Zhong Lin .
NANO ENERGY, 2018, 44 :208-216
[6]   Pulsed Nanogenerator with Huge Instantaneous Output Power Density [J].
Cheng, Gang ;
Lin, Zong-Hong ;
Lin, Long ;
Du, Zu-liang ;
Wang, Zhong Lin .
ACS NANO, 2013, 7 (08) :7383-7391
[7]   High Efficiency Power Management and Charge Boosting Strategy for a Triboelectric Nanogenerator [J].
Cheng, Xiaoliang ;
Miao, Liming ;
Song, Yu ;
Su, Zongming ;
Chen, Haotian ;
Chen, Xuexian ;
Zhang, Jinxin ;
Zhang, Haixia .
NANO ENERGY, 2017, 38 :448-456
[8]   Technology evolution from self-powered sensors to AIoT enabled smart homes [J].
Dong, Bowei ;
Shi, Qiongfeng ;
Yang, Yanqin ;
Wen, Feng ;
Zhang, Zixuan ;
Lee, Chengkuo .
NANO ENERGY, 2021, 79
[9]   Flexible triboelectric generator! [J].
Fan, Feng-Ru ;
Tian, Zhong-Qun ;
Wang, Zhong Lin .
NANO ENERGY, 2012, 1 (02) :328-334
[10]   A novel prototype design for a transformer for high voltage, high frequency, high power use [J].
Fothergill, JC ;
Devine, PW ;
Lefley, PW .
IEEE TRANSACTIONS ON POWER DELIVERY, 2001, 16 (01) :89-98