ON REGULARITY FOR THE NAVIER-STOKES EQUATIONS IN MORREY SPACES

被引:3
作者
Kukavica, Igor [1 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
关键词
Navier-Stokes equation; partial regularity; Morrey space; WEAK SOLUTIONS; INTERIOR REGULARITY; SYSTEM;
D O I
10.3934/dcds.2010.26.1319
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let u be a local weak solution of the Navier-Stokes system in a space-time domain D subset of R-n x R. We prove that for every q > 3 there exist epsilon > 0 with the following property: If (x(0), t(0)) is an element of D and if there exists r(0) > 0 such that [GRAPHICS] then the solution u is regular in a neighborhood of (x(0), t(0)). There is no assumption on the integrability of the pressure or the vorticity
引用
收藏
页码:1319 / 1328
页数:10
相关论文
共 26 条
[1]  
[Anonymous], 2002, CHAPMAN HALL CRC RES
[2]  
[Anonymous], 2003, USP MAT NAUK
[3]  
[Anonymous], 1984, THEORY NUMERICAL ANA
[4]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[5]   Morrey space techniques applied to the interior regularity problem of the Navier-Stokes equations [J].
Chen, ZM ;
Price, WG .
NONLINEARITY, 2001, 14 (06) :1453-1472
[6]  
CHEN ZM, 2001, R SOC LOND P A, V457, P2625
[7]  
Constantin P., 1988, Chicago Lectures in Mathematics
[8]   INITIAL VALUE-PROBLEM FOR NAVIER-STOKES EQUATIONS WITH DATA IN LP [J].
FABES, EB ;
JONES, BF ;
RIVIERE, NM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1972, 45 (03) :222-&
[9]  
Hopf E., 1951, Math. Nachr., V4, P213, DOI [/10.1002/mana.3210040121, DOI 10.1002/MANA.3210040121]
[10]  
KUKAVICA I, PARTIAL REGULA UNPUB