Factorization Algorithms for Temporal Psychovisual Modulation Display

被引:11
作者
Gao, Zhongpai [1 ]
Zhai, Guangtao [1 ]
Zhou, Jiantao [2 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Image Commun & Informat Proc, Shanghai 200240, Peoples R China
[2] Univ Macau, Dept Comp & Informat Sci, Macau, Peoples R China
基金
美国国家科学基金会;
关键词
Hierarchical alternating least squares (HALS); image display; nonnegative matrix factorization (NMF); temporal psychovisual modulation (TPVM); visual signal processing; NONNEGATIVE MATRIX FACTORIZATION;
D O I
10.1109/TMM.2016.2523425
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Temporal psychovisual modulation (TPVM) is a new information display technology which aims to generate multiple visual percepts for different viewers on a single display simultaneously. In a TPVM system, the viewers wearing different active liquid crystal (LC) glasses with varying transparency levels can see different images (called personal views). The viewers without LC glasses can also see a semantically meaningful image (called shared view). The display frames and weights for the LC glasses in the TPVM system can be computed through nonnegative matrix factorization (NMF) with three additional constrains: 1) the values of images and modulation weights should have upper bound (i.e., limited luminance of the display and transparency level of the LC); 2) the shared view without using viewing devices should be considered (i.e., the sum of all basis images should be a meaningful image); and 3) the sparsity of modulation weights should be considered due to the material property of LC. In this paper, we proposed to solve the constrained NMF problem by a modified version of hierarchical alternating least squares (HALS) algorithms. Through experiments, we analyze the choice of parameters in the setup of TPVM system. This work serves as a guideline for practical implementation of TPVM display system.
引用
收藏
页码:614 / 626
页数:13
相关论文
共 36 条
[1]   Algorithms and applications for approximate nonnegative matrix factorization [J].
Berry, Michael W. ;
Browne, Murray ;
Langville, Amy N. ;
Pauca, V. Paul ;
Plemmons, Robert J. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (01) :155-173
[2]  
Chen R. H., 2011, LIQUID CRYSTAL TELEV, P369
[3]   Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor Factorizations [J].
Cichocki, Andrzej ;
Phan, Anh-Huy .
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2009, E92A (03) :708-721
[4]   Evaluation of Different Algorithms of Nonnegative Matrix Factorization in Temporal Psychovisual Modulation [J].
Feng, Jianzhou ;
Huo, Xiaoming ;
Song, Li ;
Yang, Xiaokang ;
Zhang, Wenjun .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2014, 24 (04) :553-565
[5]  
Fujimura W., 2012, P SIGGRAPH AS 2012 E, P11
[6]  
Gao Z., 2015, P ACM INT C MULT, P675
[7]  
Gao ZP, 2014, 2014 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING CONFERENCE, P145, DOI 10.1109/VCIP.2014.7051525
[8]  
Gao ZP, 2014, IEEE IMAGE PROC, P2168, DOI 10.1109/ICIP.2014.7025436
[9]  
Gao ZP, 2014, IEEE INT SYMP CIRC S, P449, DOI 10.1109/ISCAS.2014.6865167
[10]   Accelerated Multiplicative Updates and Hierarchical ALS Algorithms for Nonnegative Matrix Factorization [J].
Gillis, Nicolas ;
Glineur, Francois .
NEURAL COMPUTATION, 2012, 24 (04) :1085-1105