Artificial intelligence in the diagnosis and management of hepatocellular carcinoma

被引:19
作者
Sato, Masaya [1 ,2 ]
Tateishi, Ryosuke [2 ]
Yatomi, Yutaka [1 ]
Koike, Kazuhiko [2 ]
机构
[1] Univ Tokyo, Grad Sch Med, Dept Clin Lab Med, Tokyo, Japan
[2] Univ Tokyo, Grad Sch Med, Dept Gastroenterol, Tokyo, Japan
关键词
artificial intelligence; deep learning; hepatocellular carcinoma; machine learning; predictive model; RADIOMICS; SURVIVAL; CANCER; MODEL;
D O I
10.1111/jgh.15413
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Despite recent improvements in therapeutic interventions, hepatocellular carcinoma is still associated with a poor prognosis in patients with an advanced disease at diagnosis. Recently, significant progress has been made in image recognition through advances in the field of artificial intelligence (AI) (or machine learning), especially deep learning. AI is a multidisciplinary field that draws on the fields of computer science and mathematics for developing and implementing computer algorithms capable of maximizing the predictive accuracy from static or dynamic data sources using analytic or probabilistic models. Because of the multifactorial and complex nature of liver diseases, the machine learning approach to integrate multiple factors would appear to be an advantageous approach to improve the likelihood of making a precise diagnosis and predicting the response of treatment and prognosis of liver diseases. In this review, we attempted to summarize the potential use of AI in the diagnosis and management of liver diseases, especially hepatocellular carcinoma.
引用
收藏
页码:551 / 560
页数:10
相关论文
共 54 条
[1]   Predicting Treatment Response to Intra-arterial Therapies for Hepatocellular Carcinoma with the Use of Supervised Machine Learning -An Artificial Intelligence Concept [J].
Abajian, Aaron ;
Murali, Nikitha ;
Savic, Lynn Jeanette ;
Laage-Gaupp, Fabian Max ;
Nezami, Nariman ;
Duncan, James S. ;
Schlachter, Todd ;
Lin, MingDe ;
Geschwind, Jean-Francois ;
Chapiro, Julius .
JOURNAL OF VASCULAR AND INTERVENTIONAL RADIOLOGY, 2018, 29 (06) :850-857
[2]   Radiomics with artificial intelligence for precision medicine in radiation therapy [J].
Arimura, Hidetaka ;
Soufi, Mazen ;
Kamezawa, Hidemi ;
Ninomiya, Kenta ;
Yamada, Masahiro .
JOURNAL OF RADIATION RESEARCH, 2019, 60 (01) :150-157
[3]   Comparison of Deep-Learning and Conventional Machine-Learning Methods for the Automatic Recognition of the Hepatocellular Carcinoma Areas from Ultrasound Images [J].
Brehar, Raluca ;
Mitrea, Delia-Alexandrina ;
Vancea, Flaviu ;
Marita, Tiberiu ;
Nedevschi, Sergiu ;
Lupsor-Platon, Monica ;
Rotaru, Magda ;
Badea, Radu Ioan .
SENSORS, 2020, 20 (11)
[4]   Deep Learning: A Primer for Radiologists [J].
Chartrand, Gabriel ;
Cheng, Phillip M. ;
Vorontsov, Eugene ;
Drozdzal, Michal ;
Turcotte, Simon ;
Pal, Christopher J. ;
Kadoury, Samuel ;
Tang, An .
RADIOGRAPHICS, 2017, 37 (07) :2113-2131
[5]   Liver Imaging Reporting and Data System (LI-RADS) Version 2018: Imaging of Hepatocellular Carcinoma in At-Risk Patients [J].
Chernyak, Victoria ;
Fowler, Kathryn J. ;
Kamaya, Aya ;
Kielar, Ania Z. ;
Elsayes, Khaled M. ;
Bashir, Mustafa R. ;
Kono, Yuko ;
Do, Richard K. ;
Mitchell, Donald G. ;
Singal, Amit G. ;
Tang, An ;
Sirlin, Claude B. .
RADIOLOGY, 2018, 289 (03) :816-830
[6]   Hepatocellular Carcinoma: Review of Epidemiology, Screening, Imaging Diagnosis, Response Assessment, and Treatment [J].
Clark, Toshimasa ;
Maximin, Suresh ;
Meier, Jeffrey ;
Pokharel, Sajal ;
Bhargava, Puneet .
CURRENT PROBLEMS IN DIAGNOSTIC RADIOLOGY, 2015, 44 (06) :479-486
[7]  
Courtiol P., 2018, ARXIV PREPRINT ARXIV
[8]   Stacked Convolutional Denoising Auto-Encoders for Feature Representation [J].
Du, Bo ;
Xiong, Wei ;
Wu, Jia ;
Zhang, Lefei ;
Zhang, Liangpei ;
Tao, Dacheng .
IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (04) :1017-1027
[9]  
El Hadef J., 2013, 01487191 SAE
[10]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+