Shortest non-crossing rectilinear paths in plane regions

被引:1
作者
Takahashi, J [1 ]
Suzuki, H [1 ]
Nishizeki, T [1 ]
机构
[1] TOHOKU UNIV,GRAD SCH INFORMAT SCI,SENDAI,MIYAGI 98077,JAPAN
关键词
algorithm; VLSI single-layer routing; non-crossing paths; rectilinear paths; plane region;
D O I
10.1142/S0218195997000259
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let A be a plane region inside an outer rectangle with r rectangular obstacles, and let k terminal pairs lie on the boundaries of the outer rectangle and one of the obstacles. This paper presents an efficient algorithm which finds ''non-crossing'' rectilinear paths in the plane region A, each connecting a terminal pair without passing through any obstacles, and whose total length is minimum. Non-crossing paths may share common points or line segments but do not cross each other in the plane. The algorithm takes time O(nlogn) where n = k + r.
引用
收藏
页码:419 / 436
页数:18
相关论文
共 9 条
  • [1] RECTILINEAR SHORTEST PATHS IN THE PRESENCE OF RECTANGULAR BARRIERS
    DEREZENDE, PJ
    LEE, DT
    WU, YF
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (01) : 41 - 53
  • [2] FREDERICKSON GN, 1987, SIAM J COMPUT, V16, P1004, DOI 10.1137/0216064
  • [3] Jaja J., 1992, INTRO PARALLEL ALGOR
  • [4] KLEIN PN, 1993, AN S FDN CO, P259
  • [5] LEE DT, 1991, UNPUB NONCROSSING PA
  • [6] Preparata F., 2012, Computational geometry: an introduction
  • [7] TAKAHASHI J, 1993, LECT NOTES COMPUTER, V762, P98
  • [8] TAKAHASHI J, IN PRESS ALGORITHMIC
  • [9] TAKAHASHI JY, 1992, LECT NOTES COMPUT SC, V650, P400