Error estimates of some Newton-type methods for solving nonlinear inverse problems in Hilbert scales

被引:20
作者
Jin, QN [1 ]
机构
[1] Nanjing Univ, Inst Math, Nanjing 210008, Peoples R China
关键词
D O I
10.1088/0266-5611/16/1/315
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider some Newton-type methods in Hilbert scales to solve nonlinear inverse problems. Under certain conditions we obtain the error estimates when the iteration is terminated in an a posteriori manner. Finally we present the numerical examples to verify the theoretical results.
引用
收藏
页码:187 / 197
页数:11
相关论文
共 18 条
[1]  
BAKUSHINSKII AB, 1992, COMP MATH MATH PHYS+, V32, P1353
[2]   On convergence rates for the iteratively regularized Gauss-Newton method [J].
Blaschke, B ;
Neubauer, A ;
Scherzer, O .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1997, 17 (03) :421-436
[3]  
Engl H., 1996, Mathematics and Its Applications, V375, DOI DOI 10.1007/978-94-009-1740-8
[4]  
Groetsch C W., 1993, INVERSE PROBLEMS MAT, DOI [10.1007/978-3-322-99202-4, DOI 10.1007/978-3-322-99202-4]
[5]   A regularizing Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems [J].
Hanke, M .
INVERSE PROBLEMS, 1997, 13 (01) :79-95
[6]   A CONVERGENCE ANALYSIS OF THE LANDWEBER ITERATION FOR NONLINEAR ILL-POSED PROBLEMS [J].
HANKE, M ;
NEUBAUER, A ;
SCHERZER, O .
NUMERISCHE MATHEMATIK, 1995, 72 (01) :21-37
[7]   Convergence rates of a regularized Newton method in sound-hard inverse scattering [J].
Hohage, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 36 (01) :125-142
[8]   On an a posteriori parameter choice strategy for tikhonov regularization of nonlinear ill-posed problems [J].
Jin Q.-N. ;
Hou Z.-Y. .
Numerische Mathematik, 1999, 83 (1) :139-159
[9]  
JIN QN, 1999, IN PRESS MATH COMPUT