Colloidal glass transition in unentangled polymer nanocomposite melts

被引:26
作者
Anderson, Benjamin J. [1 ]
Zukoski, Charles F.
机构
[1] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
INTERMEDIATE SCATTERING FUNCTION; STRONGLY ADSORBING SURFACES; HARD-SPHERE SUSPENSIONS; SHEAR RESPONSE; LIQUIDS; VISCOELASTICITY; NANORHEOLOGY; RELAXATION; RHEOLOGY; SYSTEM;
D O I
10.1088/0953-8984/21/28/285102
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The linear and non-linear rheology of a high volume fraction particle filled unentangled polymer melt is measured. The particles in the polymer melt behave like hard spheres as the particle volume fraction is raised. At high volume fractions, the suspension develops a plateau elastic modulus. Over the frequency range of the elastic modulus plateau, the viscous modulus develops a minimum and a maximum. The frequencies of the two local extrema initially have critical power law scaling, suggesting the approach of a singular glass transition. At higher volume fractions in excess of the glass transition, the viscous modulus continues to show a well defined minimum and a well defined maximum. The non-linear moduli show a single perturbative yield point beyond which the suspension softens. The yielding behavior of the nanocomposite is shown to be sensitive to the strain frequency and the proximity of the strain frequency to the maximum frequency for the linear viscous modulus from linear rheology which characterizes thermal relaxation of glassy particle clusters in the zero strain limit. The linear and non-linear measurements are compared against a recently developed mechanical theory for colloidal glasses.
引用
收藏
页数:10
相关论文
共 26 条
[1]   Rheology and Microstructure of an Unentangled Polymer Nanocomposite Melt [J].
Anderson, Benjamin J. ;
Zukoski, Charles F. .
MACROMOLECULES, 2008, 41 (23) :9326-9334
[2]   FORMATION OF GLASSES FROM LIQUIDS AND BIOPOLYMERS [J].
ANGELL, CA .
SCIENCE, 1995, 267 (5206) :1924-1935
[3]   Viscoelasticity and generalized Stokes-Einstein relations of colloidal dispersions [J].
Banchio, AJ ;
Nägele, G ;
Bergenholtz, J .
JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (18) :8721-8740
[4]   THE LIQUID GLASS-TRANSITION OF THE HARD-SPHERE SYSTEM [J].
BARRAT, JL ;
GOTZE, W ;
LATZ, A .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1989, 1 (39) :7163-7170
[5]   DYNAMICS OF SUPERCOOLED LIQUIDS AND THE GLASS-TRANSITION [J].
BENGTZELIUS, U ;
GOTZE, W ;
SJOLANDER, A .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1984, 17 (33) :5915-5934
[6]   Nature of the divergence in low shear viscosity of colloidal hard-sphere dispersions [J].
Cheng, ZD ;
Zhu, JX ;
Chaikin, PM ;
Phan, SE ;
Russel, WB .
PHYSICAL REVIEW E, 2002, 65 (04) :8
[7]   Contribution of slow clusters to the bulk elasticity near the colloidal glass transition [J].
Conrad, Jacinta C. ;
Dhillon, Param P. ;
Weeks, Eric R. ;
Reichman, David R. ;
Weitz, David A. .
PHYSICAL REVIEW LETTERS, 2006, 97 (26)
[8]  
Debenedetti P. G., 1996, METASTABLE LIQUIDS
[9]   PRIMARY RELAXATION IN A HARD-SPHERE SYSTEM [J].
FUCHS, M ;
HOFACKER, I ;
LATZ, A .
PHYSICAL REVIEW A, 1992, 45 (02) :898-912
[10]   NANORHEOLOGY OF CONFINED POLYMER MELTS .1. LINEAR SHEAR RESPONSE AT STRONGLY ADSORBING SURFACES [J].
GRANICK, S ;
HU, HW .
LANGMUIR, 1994, 10 (10) :3857-3866