Exploiting Supervised Learning for 3D Model Semantic Segmentation Using Multispectral Data

被引:0
|
作者
Ioannakis, George [1 ,2 ]
Arnaoutoglou, Fotis [1 ]
Koutsoudis, Anestis [1 ]
Chamzas, Christodoulos [1 ,2 ]
机构
[1] Univ Campus Kimmeria, Athena Res Ctr, GR-67100 Xanthi, Greece
[2] Democritus Univ Thrace, Fac Elect & Comp Engn, Xanthi, Greece
关键词
D O I
10.1109/spin.2019.8711658
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
3D model texture-based segmentation using multispectral imagery to define its construction materials is addressed within the scope of this work. An end-to-end pipeline is proposed to digitize a real-world object, construct a spatial consistent multispectral texture map and to identify materials on its surface. A multispectral camera capable of capturing ultraviolet to near infrared imagery is used to create image sequences for its Structure-from-Motion based 3D reconstruction. We utilize computational geometry techniques to create a spatial-consistent texture based on ultraviolet to near infrared imagery. Various supervised learning approaches are utilized and evaluated on the identification of materials on a 3D model's surface. Experimental results are promising and reveal its capabilities in the study of 31) digitized models.
引用
收藏
页码:965 / 968
页数:4
相关论文
共 50 条
  • [1] Supervised Learning for Semantic Segmentation of 3D LiDAR Data
    Mei, Jilin
    Chen, Jiayu
    Yao, Wen
    Zhao, Xijun
    Zhao, Huijing
    2019 30TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV19), 2019, : 1491 - 1498
  • [2] Semantic Segmentation of 3D LiDAR Data in Dynamic Scene Using Semi-Supervised Learning
    Mei, Jilin
    Gao, Biao
    Xu, Donghao
    Yao, Wen
    Zhao, Xijun
    Zhao, Huijing
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (06) : 2496 - 2509
  • [3] Study of the Effect of Exploiting 3D Semantic Segmentation in LiDAR Odometry
    Moreno, Francisco Miguel
    Guindel, Carlos
    Armingol, Jose Maria
    Garcia, Fernando
    APPLIED SCIENCES-BASEL, 2020, 10 (16):
  • [4] A survey on weakly supervised 3D point cloud semantic segmentation
    Wang, Jingyi
    Liu, Yu
    Tan, Hanlin
    Zhang, Maojun
    IET COMPUTER VISION, 2024, 18 (03) : 329 - 342
  • [5] GECNN for Weakly Supervised Semantic Segmentation of 3D Point Clouds
    He, Zifen
    Zhu, Shouye
    Huang, Ying
    Zhang, Yinhui
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2021, E104D (12) : 2237 - 2243
  • [6] Deep Hierarchical Learning for 3D Semantic Segmentation
    Li, Chongshou
    Liu, Yuheng
    Li, Xinke
    Zhang, Yuning
    Li, Tianrui
    Yuan, Junsong
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2025,
  • [7] Efficient 3D Deep Learning Model for Medical Image Semantic Segmentation
    Alalwan, Nasser
    Abozeid, Amr
    ElHabshy, AbdAllah A.
    Alzahrani, Ahmed
    ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (01) : 1231 - 1239
  • [8] Image Understands Point Cloud: Weakly Supervised 3D Semantic Segmentation via Association Learning
    Sun, Tianfang
    Zhang, Zhizhong
    Tan, Xin
    Qu, Yanyun
    Xie, Yuan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 1838 - 1852
  • [9] Joint Learning of 2D-3D Weakly Supervised Semantic Segmentation
    Kweon, Hyeokjun
    Yoon, Kuk-Jin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [10] Semantic segmentation of 3D LiDAR data using deep learning: a review of projection-based methods
    Jhaldiyal, Alok
    Chaudhary, Navendu
    APPLIED INTELLIGENCE, 2023, 53 (06) : 6844 - 6855