Computations of Galois representations associated to modular forms of level one

被引:3
作者
Tian, Peng [1 ,2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
modular Galois representations; modular forms; modular curves; Jacobian; Ramanujan's tau function; polynomials;
D O I
10.4064/aa164-4-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose an improved algorithm for computing mod ℓ Galois representations associated to a cusp form of f level one. The proposed method allows us to explicitly compute the case with ℓ = 29 and f of weight k = 16, and the cases with ℓ = 31 and f of weight k = 12, 20, 22. All the results are rigorously proved to be correct. As an example, we will compute the values modulo of Ramanujan's tau function at some huge primes up to a sign. Also we will give an improved uper bound on Lehmer's conjecture for Ramanujan's tau function. Copyright © 2007-2014 by IMPAN. All rights reserved.
引用
收藏
页码:399 / 411
页数:13
相关论文
共 21 条
[1]  
[Anonymous], GRAD STUD MATH
[2]  
[Anonymous], 2005, GRAD TEXTS MATH
[3]  
[Anonymous], THESIS U LEIDEN
[4]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[5]  
Buchmann J., 1994, J. Theor. Nombres Bordeaux, V6, P221
[6]  
Cohen H., 1993, GRAD TEXTS MATH, V138
[7]  
Deligne P., 1969, Seminaire Bourbaki, Expose, V355, P139
[8]  
Edixhoven S. J., 2011, Computational Aspects of Modular Forms and Galois Representations, V176
[9]   Galois group computation for rational polynomials [J].
Geissler, K ;
Klüners, J .
JOURNAL OF SYMBOLIC COMPUTATION, 2000, 30 (06) :653-674
[10]   Serre's modularity conjecture (I) [J].
Khare, Chandrashekhar ;
Wintenberger, Jean-Pierre .
INVENTIONES MATHEMATICAE, 2009, 178 (03) :485-504