The study for continuum model considering traffic jerk effect

被引:27
作者
Liu, Huaqing [1 ,2 ,3 ]
Cheng, Rongjun [4 ]
Zhu, Keqiang [1 ]
Ge, Hongxia [1 ,2 ,3 ]
机构
[1] Ningbo Univ, Fac Maritime & Transportat, Ningbo 315211, Zhejiang, Peoples R China
[2] Jiangsu Prov Collaborat Innovat Ctr Modern Urban, Nanjing 210096, Jiangsu, Peoples R China
[3] Ningbo Univ, Natl Traff Management Engn & Technol Res Ctr, Sub Ctr, Ningbo 315211, Zhejiang, Peoples R China
[4] Zhejiang Univ, Ningbo Inst Technol, Dept Fundamental Course, Ningbo 315211, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Traffic flow; Continuum model; Traffic jerk; KdV-Burgers equation; CAR-FOLLOWING MODEL; NUMERICAL TESTS; RELATIVE VELOCITY; DYNAMICAL MODEL; FLOW; WAVES;
D O I
10.1007/s11071-015-2307-7
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Based on the optimal velocity model, a new continuum model considering traffic jerk effect is presented in this paper. Then, the critical condition for the steady traffic flow is deduced. Near the neutral stability line, nonlinear analysis is taken to derive the KdV-Burgers equation for describing the density wave, and one of the solutions is given. Numerical simulation is carried out to study the influence about the traffic jerk effect.
引用
收藏
页码:57 / 64
页数:8
相关论文
共 22 条
[1]   DYNAMICAL MODEL OF TRAFFIC CONGESTION AND NUMERICAL-SIMULATION [J].
BANDO, M ;
HASEBE, K ;
NAKAYAMA, A ;
SHIBATA, A ;
SUGIYAMA, Y .
PHYSICAL REVIEW E, 1995, 51 (02) :1035-1042
[2]   Continuum approach to car-following models [J].
Berg, P ;
Mason, A ;
Woods, A .
PHYSICAL REVIEW E, 2000, 61 (02) :1056-1066
[3]   On-ramp simulations and solitary waves of a car-following model [J].
Berg, P ;
Woods, A .
PHYSICAL REVIEW E, 2001, 64 (03) :4-356024
[4]   Requiem for second-order fluid approximations of traffic flow [J].
Daganzo, CF .
TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 1995, 29 (04) :277-286
[5]   Generalized force model of traffic dynamics [J].
Helbing, D ;
Tilch, B .
PHYSICAL REVIEW E, 1998, 58 (01) :133-138
[6]   Local cluster effect in different traffic flow models [J].
Herrmann, M ;
Kerner, BS .
PHYSICA A, 1998, 255 (1-2) :163-188
[7]   A new continuum model for traffic flow and numerical tests [J].
Jiang, R ;
Wu, QS ;
Zhu, ZJ .
TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2002, 36 (05) :405-419
[8]   Full velocity difference model for a car-following theory [J].
Jiang, R ;
Wu, QS ;
Zhu, ZJ .
PHYSICAL REVIEW E, 2001, 64 (01) :4-017101
[9]   CLUSTER EFFECT IN INITIALLY HOMOGENEOUS TRAFFIC FLOW [J].
KERNER, BS ;
KONHAUSER, P .
PHYSICAL REVIEW E, 1993, 48 (04) :R2335-R2338
[10]  
Li ZP, 2006, COMMUN THEOR PHYS, V46, P367