Detection of exposed steel rebars based on deep-learning techniques and unmanned aerial vehicles

被引:22
|
作者
Santos, R. [1 ]
Ribeiro, D. [1 ]
Lopes, P. [2 ]
Cabral, R. [3 ]
Calcada, R. [3 ]
机构
[1] Polytech Porto, Sch Engn, CONSTRUCT LESE, Porto, Portugal
[2] Polytech Porto, Sch Engn, Porto, Portugal
[3] Univ Porto, Fac Engn, CONSTRUCT LESE, Porto, Portugal
关键词
Remote inspection; Reinforced concrete (RC); Concrete structures; Exposed rebar; Unmanned aerial vehicles (UAVs); Convolutional neural network (CNN); CONVOLUTIONAL NEURAL-NETWORKS; CONCRETE CRACK DETECTION; DAMAGE DETECTION;
D O I
10.1016/j.autcon.2022.104324
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In recent years deep-learning techniques have been developed and applied to inspect cracks in RC structures. The accuracy of these techniques leads to believe that they may also be applied to the identification of other pathologies. This article proposes a technique for automated detection of exposed steel rebars. The tools developed rely on convolutional neural networks (CNNs) based on transfer-learning using AlexNet. Experiments were conducted in large-scale structures to assess the efficiency of the method. To circumvent limitations on the proximity access to structures as large as the ones used in the experiments, as well as increase cost efficiency, the image capture was performed using an unmanned aerial system (UAS). The final goal of the proposed methodology is to generate orthomosaic maps of the pathologies or structure 3D models with superimposed pathologies. The results obtained are promising, confirming the high adaptability of CNN based methodologies for structural inspection.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Deep learning for unmanned aerial vehicles detection: A review
    Al-lQubaydhi, Nader
    Alenezi, Abdulrahman
    Alanazi, Turki
    Senyor, Abdulrahman
    Alanezi, Naif
    Alotaibi, Bandar
    Alotaibi, Munif
    Razaque, Abdul
    Hariri, Salim
    COMPUTER SCIENCE REVIEW, 2024, 51
  • [2] Enhanced mine road monitoring using unmanned aerial vehicles and deep-learning approach
    Saputra, Zola
    Sakti, Anjar Dimara
    Firmana, Ardila
    Ignatius, Marulitua
    Hede, Arie Naftali Hawu
    Saepuloh, Asep
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2023, 32
  • [3] Benchmarking Audio-based Deep Learning Models for Detection and Identification of Unmanned Aerial Vehicles
    Katta, Sai Srinadhu
    Nandyala, Sivaprasad
    Viegas, Eduardo Kugler
    AlMahmoud, Abdelrahman
    5TH WORKSHOP ON BENCHMARKING CYBER-PHYSICAL SYSTEMS AND INTERNET OF THINGS (CPS-IOTBENCH 2022), 2022, : 7 - 11
  • [4] Benchmarking Audio-based Deep Learning Models for Detection and Identification of Unmanned Aerial Vehicles
    Katta, Sai Srinadhu
    Nandyala, Sivaprasad
    Viegas, Eduardo Kugler
    Almahmoud, Abdelrahman
    Proceedings - 5th Workshop on Benchmarking Cyber-Physical Systems and Internet of Things, CPS-IoTBench 2022, 2022, : 7 - 11
  • [5] Automatic Modulation Classification Based on Deep Learning for Unmanned Aerial Vehicles
    Zhang, Duona
    Ding, Wenrui
    Zhang, Baochang
    Xie, Chunyu
    Li, Hongguang
    Liu, Chunhui
    Han, Jungong
    SENSORS, 2018, 18 (03)
  • [6] Application of Deep-Learning Methods to Bird Detection Using Unmanned Aerial Vehicle Imagery
    Hong, Suk-Ju
    Han, Yunhyeok
    Kim, Sang-Yeon
    Lee, Ah-Yeong
    Kim, Ghiseok
    SENSORS, 2019, 19 (07)
  • [7] Transformers and deep CNNs for Unmanned Aerial Vehicles Detection
    Qi, Zhangyang
    Laplante, Jean-Francois
    Akhloufi, Moulay A.
    UNMANNED SYSTEMS TECHNOLOGY XXIV, 2022, 12124
  • [8] Detection of Bottle Marine Debris Using Unmanned Aerial Vehicles and Machine Learning Techniques
    Tran, Thi Linh Chi
    Huang, Zhi-Cheng
    Tseng, Kuo-Hsin
    Chou, Ping-Hsien
    DRONES, 2022, 6 (12)
  • [9] Detection Based Tracking of Unmanned Aerial Vehicles
    Uzun, Bedirhan
    Eker, Onur
    Saribas, Hasan
    Cevikalp, Hakan
    2019 27TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2019,
  • [10] Adversarial Attacks and Defenses for Deep-Learning-Based Unmanned Aerial Vehicles
    Tian, Jiwei
    Wang, Buhong
    Guo, Rongxiao
    Wang, Zhen
    Cao, Kunrui
    Wang, Xiaodong
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (22): : 22399 - 22409