Nuciferine modulates the gut microbiota and prevents obesity in high-fat diet-fed rats

被引:96
|
作者
Wang, Yu [1 ,2 ,3 ,4 ]
Yao, Weifan [1 ,2 ,3 ,4 ]
Li, Bo [1 ,2 ,3 ,4 ]
Qian, Shiyun [1 ,2 ,3 ,4 ]
Wei, Binbin [1 ,2 ,3 ,4 ]
Gong, Shiqiang [1 ,2 ,3 ,4 ]
Wang, Jing [1 ,2 ,3 ,4 ]
Liu, Mingyan [1 ,2 ,3 ,4 ]
Wei, Minjie [1 ,2 ,3 ,4 ]
机构
[1] China Med Univ, Sch Pharm, Shenyang 110122, Peoples R China
[2] China Med Univ, Minist Educ, Liaoning Key Lab Mol Targeted Antitumor Drug Dev, Shenyang 110122, Peoples R China
[3] China Med Univ, Minist Educ, Liaoning Canc Immune Peptide Drug Engn Technol Re, Shenyang 110122, Peoples R China
[4] China Med Univ, Minist Educ, Key Lab Precis Diag & Treatment Gastrointestinal, Shenyang 110122, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
INTESTINAL BARRIER; GEN; NOV; INFLAMMATION; CONTRIBUTES; BACTERIA; ACIDS; METABOLISM; MECHANISMS; RESISTANCE; BUTYRATE;
D O I
10.1038/s12276-020-00534-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Gut microbiota dysbiosis has a significant role in the pathogenesis of metabolic diseases, including obesity. Nuciferine (NUC) is a main bioactive component in the lotus leaf that has been used as food in China since ancient times. Here, we examined whether the anti-obesity effects of NUC are related to modulations in the gut microbiota. Using an obese rat model fed a HFD for 8 weeks, we show that NUC supplementation of HFD rats prevents weight gain, reduces fat accumulation, and ameliorates lipid metabolic disorders. Furthermore, 16S rRNA gene sequencing of the fecal microbiota suggested that NUC changed the diversity and composition of the gut microbiota in HFD-fed rats. In particular, NUC decreased the ratio of the phyla Firmicutes/Bacteroidetes, the relative abundance of the LPS-producing genus Desulfovibrio and bacteria involved in lipid metabolism, whereas it increased the relative abundance of SCFA-producing bacteria in HFD-fed rats. Predicted functional analysis of microbial communities showed that NUC modified genes involved in LPS biosynthesis and lipid metabolism. In addition, serum metabolomics analysis revealed that NUC effectively improved HFD-induced disorders of endogenous metabolism, especially lipid metabolism. Notably, NUC promoted SCFA production and enhanced intestinal integrity, leading to lower blood endotoxemia to reduce inflammation in HFD-fed rats. Together, the anti-obesity effects of NUC may be related to modulations in the composition and potential function of gut microbiota, improvement in intestinal barrier integrity and prevention of chronic low-grade inflammation. This research may provide support for the application of NUC in the prevention and treatment of obesity. Obesity: Getting leaner on lotus leaves A natural compound found in lotus leaf could treat and prevent obesity by stabilizing disrupted gut microbiota and reducing the associated chronic. Obesity is a considerable health burden worldwide, yet treatment options are limited. The composition of an individual's gut microbiota influences the development of obesity; an imbalance in the ratio of two bacterial species in particular can accelerate the disease. Mingyan Liu and Minjie Wei at the China Medical University, Shenyang, and co-workers demonstrated that nuciferine, a bioactive component of lotus leaf, reduced weight gain and fat accumulation in rats fed a high-fat diet. Nuciferine changed the diversity and composition of the rats' gut microbiota, and modified the expression of genes involved in processes such as lipid metabolism. Nuciferine also enhanced intestinal integrity, and reduced chronic low-level inflammation.
引用
收藏
页码:1959 / 1975
页数:17
相关论文
共 50 条
  • [21] Brevibacillus laterosporus BL1, a promising probiotic, prevents obesity and modulates gut microbiota in mice fed a high-fat diet
    Weng, Guangying
    Huang, Jian
    Ma, Xianyong
    Song, Min
    Yin, Yulong
    Deng, Dun
    Deng, Jinping
    FRONTIERS IN NUTRITION, 2022, 9
  • [22] IgA-Targeted Lactobacillus jensenii Modulated Gut Barrier and Microbiota in High-Fat Diet-Fed Mice
    Sun, Jin
    Qi, Ce
    Zhu, Hualing
    Zhou, Qin
    Xiao, Hang
    Le, Guowei
    Chen, Daozhen
    Yu, Renqiang
    FRONTIERS IN MICROBIOLOGY, 2019, 10
  • [23] Effect of κ-carrageenan on glucolipid metabolism and gut microbiota in high-fat diet-fed mice
    Wang, Qiong
    Zhang, Ling
    He, Yalun
    Zeng, Lirong
    He, Juncheng
    Yang, Yang
    Zhang, Tongcun
    JOURNAL OF FUNCTIONAL FOODS, 2021, 86
  • [24] Collagen peptide from Walleye pollock skin attenuated obesity and modulated gut microbiota in high-fat diet-fed mice
    Wang, Shuo
    Lv, Zhiyuan
    Zhao, Wandong
    Wang, Linna
    He, Ningning
    JOURNAL OF FUNCTIONAL FOODS, 2020, 74
  • [25] Structural Changes of Gut Microbiota during Berberine-Mediated Prevention of Obesity and Insulin Resistance in High-Fat Diet-Fed Rats
    Zhang, Xu
    Zhao, Yufeng
    Zhang, Menghui
    Pang, Xiaoyan
    Xu, Jia
    Kang, Chaoying
    Li, Meng
    Zhang, Chenhong
    Zhang, Zhiguo
    Zhang, Yifei
    Li, Xiaoying
    Ning, Guang
    Zhao, Liping
    PLOS ONE, 2012, 7 (08):
  • [26] Anti-obesity Effects of Ginsenosides in High-Fat Diet-Fed Rats
    Park, Hyun-Jung
    Kim, Ji Hyun
    Shim, Insop
    CHINESE JOURNAL OF INTEGRATIVE MEDICINE, 2019, 25 (12) : 895 - 901
  • [27] Potato Resistant Starch Type 1 Promotes Obesity Linked with Modified Gut Microbiota in High-Fat Diet-Fed Mice
    Zhang, Weiyue
    Zhang, Nana
    Guo, Xinxin
    Fan, Bei
    Cheng, Shumei
    Wang, Fengzhong
    MOLECULES, 2024, 29 (02):
  • [28] Sinapic acid and resveratrol alleviate oxidative stress with modulation of gut microbiota in high-fat diet-fed rats
    Yang, Chen
    Deng, Qianchun
    Xu, Jiqu
    Wang, Xu
    Hu, Chao
    Tang, Hu
    Huang, Fenghong
    FOOD RESEARCH INTERNATIONAL, 2019, 116 : 1202 - 1211
  • [29] Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent
    Hamilton, M. Kristina
    Boudry, Galle
    Lemay, Danielle G.
    Raybould, Helen E.
    AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 2015, 308 (10): : G840 - G851
  • [30] Sacha inchi oil alleviates gut microbiota dysbiosis and improves hepatic lipid dysmetabolism in high-fat diet-fed rats
    Li, Pan
    Huang, Jianzhao
    Xiao, Nan
    Cai, Xin
    Yang, Yunyun
    Deng, Jiewei
    Zhang, Lian-Hui
    Du, Bing
    FOOD & FUNCTION, 2020, 11 (07) : 5827 - 5841