A sufficient integral condition for local regularity of solutions to the surface growth model

被引:10
作者
Ozanski, Wojciech S. [1 ]
机构
[1] Univ Warwick, Inst Math, Zeeman Bldg, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Ladyzhenskaya Prodi Serrin condition; Local regularity; Surface growth model; The Navier-Stokes equations; NAVIER-STOKES EQUATIONS; SUITABLE WEAK SOLUTIONS; INTERIOR REGULARITY;
D O I
10.1016/j.jfa.2019.02.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The surface growth model, u(t) + u(xxxx) + partial derivative(xx)u(x)(2) = 0, is a one-dimensional fourth order equation, which shares a number of striking similarities with the three-dimensional incompressible Navier Stokes equations, including the results regarding existence and uniqueness of solutions and the partial regularity theory. Here we show that a weak solution of this equation is smooth on a space-time cylinder Q if the Serrin condition u(x) epsilon L-q' L-q (Q) is satisfied, where q, q' epsilon [1, infinity] are such that either 1/q 4/q' < 1 or 1/q 4/q' = 1, q' < infinity. Crown Copyright (C) 2019 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:2990 / 3013
页数:24
相关论文
共 27 条
[1]  
Adams R.A., 2003, PURE APPL MATH, V140
[2]   Local existence and uniqueness in the largest critical space for a surface growth model [J].
Bloemker, Dirk ;
Romito, Marco .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2012, 19 (03) :365-381
[3]  
Blömker D, 2009, DYNAM PART DIFFER EQ, V6, P227
[4]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[5]   Self-organized ordering of nanostructures produced by ion-beam sputtering -: art. no. 016102 [J].
Castro, M ;
Cuerno, R ;
Vázquez, L ;
Gago, R .
PHYSICAL REVIEW LETTERS, 2005, 94 (01)
[6]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[7]   L3,∞-solutions of the Navier-Stokes equations and backward uniqueness [J].
Escauriaza, L ;
Seregin, G ;
Sverák, V .
RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (02) :211-250
[8]   INITIAL VALUE-PROBLEM FOR NAVIER-STOKES EQUATIONS WITH DATA IN LP [J].
FABES, EB ;
JONES, BF ;
RIVIERE, NM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1972, 45 (03) :222-&
[9]  
Ferrero A, 2008, DISCRETE CONT DYN-A, V21, P1129
[10]  
Giga MH, 2010, PROG NONLINEAR DIFFE, V79, P1, DOI 10.1007/978-0-8176-4651-6