Highly transparent, stretchable, and rapid self-healing polyvinyl alcohol/cellulose nanofibril hydrogel sensors for sensitive pressure sensing and human motion detection

被引:254
作者
Jing, Xin [1 ,2 ,3 ]
Li, Heng [4 ]
Mi, Hao-Yang [1 ,4 ]
Liu, Yue-Jun [1 ]
Feng, Pei-Yong [1 ]
Tan, Yi-Min [1 ]
Turng, Lih-Sheng [2 ,3 ]
机构
[1] Hunan Univ Technol, Key Lab Adv Packaging Mat & Technol Hunan Prov, Zhuzhou 412007, Hunan, Peoples R China
[2] Univ Wisconsin, Wisconsin Inst Discovery, Madison, WI 53715 USA
[3] Univ Wisconsin, Dept Mech Engn, Madison, WI 53706 USA
[4] Hong Kong Polytech Univ, Dept Bldg & Real Estate, Hong Kong 518000, Peoples R China
基金
中国国家自然科学基金;
关键词
Stretchable hydrogel; Transparent; Self-healing; High sensitivity; DOUBLE-NETWORK HYDROGELS; CROSS-LINKED HYDROGELS; RHEOLOGICAL CHARACTERIZATION; SKIN; ADHESIVE; STRENGTH; DEVICES; ROBUST;
D O I
10.1016/j.snb.2019.05.082
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Wearable sensors have emerged as favored novel devices for human healthcare. Current sensors, however, suffer from low sensitivity, non-transparency, and lack of self-healing ability. In this study, we synthesized a polyvinyl alcohol/cellulose nanofibril (PVA/CNF) hydrogel with dual-crosslinked networks for highly transparent, stretchable, and self-healing pressure and strain sensors. The hydrogel contains dynamic borate bonds, metal-carboxylate coordination bonds, and hydrogen bonds, all of which contribute to the hydrogel's superior dimensional stability, mechanical strength and flexibility, and spontaneous self-healing ability as compared to traditional PVA hydrogels. The developed hydrogel has a moderate modulus of 11.2 kPa, and a high elongation rate of 1900%. It spontaneously self-heals within 15 s upon contact without any external stimuli, has a high transmittance of over 90%, and has excellent compatibility with human fibroblasts. The capacitive sensor developed based on the PVA/CNF hydrogel has high sensitivity to very subtle pressure changes, such as small water droplets. When used as a strain sensor, it was capable of detecting and monitoring various human motions such as finger, knee, elbow, and head movements, breathing, and gentle tapping. The developed hydrogel and sensors not only show great potential in electronic skin, personal healthcare, and wearable devices, but may also inspire the development of transparent, intelligent skin-like sensors.
引用
收藏
页码:159 / 167
页数:9
相关论文
共 66 条
[1]   Stretchable and self-healing polymers and devices for electronic skin [J].
Benight, Stephanie J. ;
Wang, Chao ;
Tok, Jeffrey B. H. ;
Bao, Zhenan .
PROGRESS IN POLYMER SCIENCE, 2013, 38 (12) :1961-1977
[2]   Extremely Stretchable Strain Sensors Based on Conductive Self-Healing Dynamic Cross-Links Hydrogels for Human-Motion Detection [J].
Cai, Guofa ;
Wang, Jiangxin ;
Qian, Kai ;
Chen, Jingwei ;
Li, Shaohui ;
Lee, Pooi See .
ADVANCED SCIENCE, 2017, 4 (02)
[3]   A Transparent, Self-Healing, Highly Stretchable Ionic Conductor [J].
Cao, Yue ;
Morrissey, Timothy G. ;
Acome, Eric ;
Allec, Sarah I. ;
Wong, Bryan M. ;
Keplinger, Christoph ;
Wang, Chao .
ADVANCED MATERIALS, 2017, 29 (10)
[4]   Self-Healing Materials for Next-Generation Energy Harvesting and Storage Devices [J].
Chen, Dongdong ;
Wang, Dongrui ;
Yang, Yu ;
Huang, Qiyao ;
Zhu, Shijin ;
Zheng, Zijian .
ADVANCED ENERGY MATERIALS, 2017, 7 (23)
[5]   Mechanically strong hybrid double network hydrogels with antifouling properties [J].
Chen, Hong ;
Chen, Qiang ;
Hu, Rundong ;
Wang, Hua ;
Newby, Bi-min Zhang ;
Chang, Yung ;
Zheng, Jie .
JOURNAL OF MATERIALS CHEMISTRY B, 2015, 3 (27) :5426-5435
[6]   Improvement of Mechanical Strength and Fatigue Resistance of Double Network Hydrogels by Ionic Coordination Interactions [J].
Chen, Qiang ;
Yan, Xiaoqiang ;
Zhu, Lin ;
Chen, Hong ;
Jiang, Bing ;
Wei, Dandan ;
Huang, Lina ;
Yang, Jia ;
Liu, Baozhong ;
Zheng, Jie .
CHEMISTRY OF MATERIALS, 2016, 28 (16) :5710-5720
[7]   A Novel Design Strategy for Fully Physically Linked Double Network Hydrogels with Tough, Fatigue Resistant, and Self-Healing Properties [J].
Chen, Qiang ;
Zhu, Lin ;
Chen, Hong ;
Yan, Hongli ;
Huang, Lina ;
Yang, Jia ;
Zheng, Jie .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (10) :1598-1607
[8]   A Robust, One-Pot Synthesis of Highly Mechanical and Recoverable Double Network Hydrogels Using Thermoreversible Sol-Gel Polysaccharide [J].
Chen, Qiang ;
Zhu, Lin ;
Zhao, Chao ;
Wang, Qiuming ;
Zheng, Jie .
ADVANCED MATERIALS, 2013, 25 (30) :4171-4176
[9]   Hydrogel with Ultrafast Self-Healing Property Both in Air and Underwater [J].
Chen, Wei-Peng ;
Hao, De-Zhao ;
Hao, Wan-Jun ;
Guo, Xing-Lin ;
Jiang, Lei .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (01) :1258-1265
[10]  
Chortos A, 2016, NAT MATER, V15, P937, DOI 10.1038/NMAT4671