Exceptional Charge Transport Properties of Graphene on Germanium

被引:33
作者
Cavallo, Francesca [1 ]
Delgado, Richard Rojas [1 ]
Kelly, Michelle M. [2 ]
Perez, Jose R. Sanchez [1 ]
Schroeder, Daniel P. [1 ]
Xing, Huili Grace [2 ]
Eriksson, Mark A. [1 ]
Lagally, Max G. [1 ]
机构
[1] Univ Wisconsin, Madison, WI 53706 USA
[2] Univ Notre Dame, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
graphene; Germanium substrate; interface states; doping; high mobility; low sheet resistivity; SURFACE; SCATTERING; OXIDATION; GE(100); NANOMEMBRANES; DENSITY; GE;
D O I
10.1021/nn503381m
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The excellent charge transport properties of graphene suggest a wide range of application in analog electronics. While most practical devices will require that graphene be bonded to a substrate, such bonding generally degrades these transport properties. In contrast, when graphene is transferred to Ge(001) its conductivity is extremely high and the charge carrier mobility derived from the relevant transport measurements is, under some circumstances, higher than that of freestanding, edge-supported graphene. We measure a mobility of similar to 5 x 10(5) cm(2) V-1 s(-1) at 20 K, and similar to 10(3) cm(2) V-1 s(-1) at 300 K. These values are close to the theoretical limit for doped graphene. Carrier densities in the graphene are as high as 10(14) cm(-2) at 300 K.
引用
收藏
页码:10237 / 10245
页数:9
相关论文
共 50 条
[41]   Quantum corrected hydrodynamic models for charge transport in graphene [J].
Luca, Liliana ;
Romano, Vittorio .
ANNALS OF PHYSICS, 2019, 406 :30-53
[42]   KINETIC TREATMENT OF CHARGE CARRIER AND PHONON TRANSPORT IN GRAPHENE [J].
Lichtenberger, P. ;
Schueerrer, F. ;
Piscanec, S. ;
Ferrari, A. C. .
APPLIED AND INDUSTRIAL MATHEMATICS IN ITALY III, 2009, 82 :413-424
[43]   Discontinuous Galerkin approach for the simulation of charge transport in graphene [J].
Nastasi, Giovanni ;
Romano, Vittorio .
RICERCHE DI MATEMATICA, 2021, 70 (01) :149-165
[44]   Bipolar Hydrodynamical Model for Charge Transport in Graphene Nanoribbons [J].
Camiola, V. D. ;
Nastasi, G. .
JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2022, 51 (1-3) :80-100
[45]   Diffusive charge transport in graphene on SiO2 [J].
Chen, J. -H. ;
Jang, C. ;
Ishigami, M. ;
Xiao, S. ;
Cullen, W. G. ;
Williams, E. D. ;
Fuhrer, M. S. .
SOLID STATE COMMUNICATIONS, 2009, 149 (27-28) :1080-1086
[46]   Impact of germanium substrate orientation on morphological and structural properties of graphene grown by CVD method [J].
Sitek, Jakub ;
Pasternak, Iwona ;
Grzonka, Justyna ;
Sobieski, Jan ;
Judek, Jaroslaw ;
Dabrowski, Pawel ;
Zdrojek, Mariusz ;
Strupinski, Wlodek .
APPLIED SURFACE SCIENCE, 2020, 499
[47]   Possible charge ordering and anomalous transport in graphene/graphene quantum dot heterostructure [J].
Roy, Rajarshi ;
Holec, David ;
Michal, Lukas ;
Hemzal, Dusan ;
Sarkar, Saikat ;
Kumar, Gundam Sandeep ;
Necas, David ;
Dhankhar, Meena ;
Kaushik, Preeti ;
Gomez, I. Jennifer ;
Zajickova, Lenka .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (26)
[48]   Control of spectral, topological and charge transport properties of graphene via circularly polarized light and magnetic field [J].
Pena, Adrian .
RESULTS IN PHYSICS, 2023, 46
[49]   Electrical Noise and Transport Properties of Graphene [J].
Sun, Nan ;
Tahy, Kristof ;
Xing, Huili ;
Jena, Debdeep ;
Arnold, Gerald ;
Ruggiero, Steven T. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2013, 172 (3-4) :202-211
[50]   Transport properties of corrugated graphene nanoribbons [J].
Yu, Zhizhou ;
Sun, L. Z. ;
Zhang, C. X. ;
Zhong, J. X. .
APPLIED PHYSICS LETTERS, 2010, 96 (17)