Exceptional Charge Transport Properties of Graphene on Germanium

被引:33
作者
Cavallo, Francesca [1 ]
Delgado, Richard Rojas [1 ]
Kelly, Michelle M. [2 ]
Perez, Jose R. Sanchez [1 ]
Schroeder, Daniel P. [1 ]
Xing, Huili Grace [2 ]
Eriksson, Mark A. [1 ]
Lagally, Max G. [1 ]
机构
[1] Univ Wisconsin, Madison, WI 53706 USA
[2] Univ Notre Dame, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
graphene; Germanium substrate; interface states; doping; high mobility; low sheet resistivity; SURFACE; SCATTERING; OXIDATION; GE(100); NANOMEMBRANES; DENSITY; GE;
D O I
10.1021/nn503381m
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The excellent charge transport properties of graphene suggest a wide range of application in analog electronics. While most practical devices will require that graphene be bonded to a substrate, such bonding generally degrades these transport properties. In contrast, when graphene is transferred to Ge(001) its conductivity is extremely high and the charge carrier mobility derived from the relevant transport measurements is, under some circumstances, higher than that of freestanding, edge-supported graphene. We measure a mobility of similar to 5 x 10(5) cm(2) V-1 s(-1) at 20 K, and similar to 10(3) cm(2) V-1 s(-1) at 300 K. These values are close to the theoretical limit for doped graphene. Carrier densities in the graphene are as high as 10(14) cm(-2) at 300 K.
引用
收藏
页码:10237 / 10245
页数:9
相关论文
共 50 条
[31]   Transport Properties of Rippled Graphene [J].
Zwierzycki, M. .
ACTA PHYSICA POLONICA A, 2012, 121 (5-6) :1246-1249
[32]   Optical Properties of Graphene Nanoplatelets on Amorphous Germanium Substrates [J].
Politano, Grazia Giuseppina .
MOLECULES, 2024, 29 (17)
[33]   Effect of substitutional impurities on the electronic transport properties of graphene [J].
Berdiyorov, G. R. ;
Bahlouli, H. ;
Peeters, F. M. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2016, 84 :22-26
[34]   Electron Hole Symmetry Breaking in Charge Transport in Nitrogen-Doped Graphene [J].
Li, Jiayu ;
Lin, Li ;
Rui, Dingran ;
Li, Qucheng ;
Zhang, Jincan ;
Kang, Ning ;
Zhang, Yanfeng ;
Peng, Hailin ;
Liu, Zhongfan ;
Xu, H. Q. .
ACS NANO, 2017, 11 (05) :4641-4650
[35]   Structural and Charge Transport Properties of Molecular Tunneling Junctions with Single-Layer Graphene Electrodes [J].
Jeong, Inho ;
Song, Hyunwook .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2018, 72 (03) :394-399
[36]   Magnetoresistance and Charge Transport in Graphene Governed by Nitrogen Dopants [J].
Rein, Markus ;
Richter, Nils ;
Parvez, Khaled ;
Feng, Xinliang ;
Sachdev, Hermann ;
Klaeui, Mathias ;
Muellen, Klaus .
ACS NANO, 2015, 9 (02) :1360-1366
[37]   Charge Transport and Hot-Phonon Activation in Graphene [J].
Morandi, Omar .
JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2014, 43 (1-7) :162-182
[38]   Charge carrier transport across grain boundaries in graphene [J].
Mendez, J. P. ;
Arca, F. ;
Ramos, J. ;
Ortiz, M. ;
Ariza, M. P. .
ACTA MATERIALIA, 2018, 154 :199-206
[39]   Comparing Kinetic and MEP Model of Charge Transport in Graphene [J].
Luca, Liliana ;
Mascali, Giovanni ;
Nastasi, Giovanni ;
Romano, Vittorio .
JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2020, 49 (07) :368-388
[40]   Discontinuous Galerkin approach for the simulation of charge transport in graphene [J].
Giovanni Nastasi ;
Vittorio Romano .
Ricerche di Matematica, 2021, 70 :149-165