Nonuniqueness of Weak Solutions to the SQG Equation

被引:76
作者
Buckmaster, Tristan [1 ,4 ]
Shkoller, Steve [2 ]
Vicol, Vlad [3 ,5 ]
机构
[1] Courant Inst, New York, NY 10012 USA
[2] Univ Calif Davis, Dept Math, One Shields Ave, Davis, CA 95616 USA
[3] Princeton Univ, Princeton, NJ 08544 USA
[4] Princeton Univ, Dept Math, Fine Hall,304 Washington Rd, Princeton, NJ 08544 USA
[5] NYU, Courant Inst, 251 Mercer St, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
QUASI-GEOSTROPHIC EQUATION; SHARP FRONTS; ANOMALOUS DISSIPATION; ENERGY-CONSERVATION; ONSAGERS CONJECTURE; MAXIMUM-PRINCIPLES; WELL-POSEDNESS; EXISTENCE; SINGULARITIES; REGULARITY;
D O I
10.1002/cpa.21851
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that weak solutions of the inviscid SQG equations are not unique, thereby answering Open Problem 11 of De Lellis and Szekelyhidi in 2012. Moreover, we also show that weak solutions of the dissipative SQG equation are not unique, even if the fractional dissipation is stronger than the square root of the Laplacian. In view of the results of Marchand in 2008, we establish that for the dissipative SQG equation, weak solutions may be constructed in the same function space both via classical weak compactness arguments and via convex integration. (c) 2019 Wiley Periodicals, Inc.
引用
收藏
页码:1809 / 1874
页数:66
相关论文
共 86 条
[31]   Long Time Dynamics of Forced Critical SQG [J].
Constantin, Peter ;
Tarfulea, Andrei ;
Vicol, Vlad .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 335 (01) :93-141
[32]   Absence of Anomalous Dissipation of Energy in Forced Two Dimensional Fluid Equations [J].
Constantin, Peter ;
Tarfulea, Andrei ;
Vicol, Vlad .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 212 (03) :875-903
[33]   Nonlinear maximum principles for dissipative linear nonlocal operators and applications [J].
Constantin, Peter ;
Vicol, Vlad .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2012, 22 (05) :1289-1321
[34]   New Numerical Results for the Surface Quasi-Geostrophic Equation [J].
Constantin, Peter ;
Lai, Ming-Chih ;
Sharma, Ramjee ;
Tseng, Yu-Hou ;
Wu, Jiahong .
JOURNAL OF SCIENTIFIC COMPUTING, 2012, 50 (01) :1-28
[35]  
Constantin Peter, 2017, CBMS NSF REGIONAL C, V90, DOI [10.1137/1.9781611974805.ch1, DOI 10.1137/1.9781611974805.CH1]
[36]   A maximum principle applied to quasi-geostrophic equations [J].
Córdoba, A ;
Córdoba, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 249 (03) :511-528
[37]   Evidence of singularities for a family of contour dynamics equations [J].
Córdoba, D ;
Fontelos, MA ;
Mancho, AM ;
Rodrigo, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (17) :5949-5952
[38]   Almost sharp fronts for the surface quasi-geostrophic equation [J].
Córdoba, D ;
Fefferman, C ;
Rodrigo, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (09) :2687-2691
[40]   Growth of solutions for QG and 2D Euler equations [J].
Cordoba, D ;
Fefferman, C .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (03) :665-670