Nonuniqueness of Weak Solutions to the SQG Equation
被引:76
作者:
Buckmaster, Tristan
论文数: 0引用数: 0
h-index: 0
机构:
Courant Inst, New York, NY 10012 USA
Princeton Univ, Dept Math, Fine Hall,304 Washington Rd, Princeton, NJ 08544 USACourant Inst, New York, NY 10012 USA
Buckmaster, Tristan
[1
,4
]
Shkoller, Steve
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Davis, Dept Math, One Shields Ave, Davis, CA 95616 USACourant Inst, New York, NY 10012 USA
Shkoller, Steve
[2
]
Vicol, Vlad
论文数: 0引用数: 0
h-index: 0
机构:
Princeton Univ, Princeton, NJ 08544 USA
NYU, Courant Inst, 251 Mercer St, New York, NY 10012 USACourant Inst, New York, NY 10012 USA
Vicol, Vlad
[3
,5
]
机构:
[1] Courant Inst, New York, NY 10012 USA
[2] Univ Calif Davis, Dept Math, One Shields Ave, Davis, CA 95616 USA
[3] Princeton Univ, Princeton, NJ 08544 USA
[4] Princeton Univ, Dept Math, Fine Hall,304 Washington Rd, Princeton, NJ 08544 USA
[5] NYU, Courant Inst, 251 Mercer St, New York, NY 10012 USA
We prove that weak solutions of the inviscid SQG equations are not unique, thereby answering Open Problem 11 of De Lellis and Szekelyhidi in 2012. Moreover, we also show that weak solutions of the dissipative SQG equation are not unique, even if the fractional dissipation is stronger than the square root of the Laplacian. In view of the results of Marchand in 2008, we establish that for the dissipative SQG equation, weak solutions may be constructed in the same function space both via classical weak compactness arguments and via convex integration. (c) 2019 Wiley Periodicals, Inc.