Nanoplatelet Size to Control the Alignment and Thermal Conductivity in Copper-Graphite Composites

被引:134
作者
Boden, Andre [1 ]
Boerner, Benji [1 ]
Kusch, Patryk [1 ]
Firkowska, Izabela [1 ]
Reich, Stephanie [1 ]
机构
[1] Free Univ Berlin, Dept Phys, D-14195 Berlin, Germany
关键词
Metal-matrix composites (MMCs); copper; graphite nanoplatelets; thermal properties; anisotropy; polarized Raman spectroscopy; CARBON NANOTUBES; INTERFACE MATERIALS; GRAPHENE; NANOCOMPOSITES; RESISTANCE; STRENGTH;
D O I
10.1021/nl501411g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A controlled alignment of graphite nanoplatelets in a composite matrix will allow developing materials with tailored thermal properties. Achieving a high degree of alignment in a reproducible way, however, remains challenging. Here we demonstrate the alignment of graphite nanoplatelets in copper composites produced via high-energy ball milling and spark plasma sintering. The orientation of the nanoplatelets in the copper matrix is verified by polarized Raman scattering and electron microscopy showing an increasing order with increasing platelet size. The thermal conductivity k along the alignment direction is up to five times higher than perpendicular to it. The composite with the highest degree of alignment has a thermal diffusivity (100 mm(2)s(-1)) comparable to copper (105 mm(2)s(-1)) but is 20% lighter. By modeling the thermal properties of the composites within the effective medium approximation we show that (i) the Kapitza resistance is not a limiting factor for improving the thermal conductivity of a copper-graphite system and (ii) copper-graphite-nanoplatelet composites may be expected to achieve a higher thermal conductivity than copper upon further refinement.
引用
收藏
页码:3640 / 3644
页数:5
相关论文
共 30 条
[1]  
[Anonymous], METAL MAT T B
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[4]   Unusually high thermal conductivity of carbon nanotubes [J].
Berber, S ;
Kwon, YK ;
Tománek, D .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4613-4616
[5]  
CARDONA M, 1982, TOP APPL PHYS, V50, P19
[6]   Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process [J].
Daoush, Walid M. ;
Lim, Byung K. ;
Mo, Chan B. ;
Nam, Dong H. ;
Hong, Soon H. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 513-14 :247-253
[7]   Effect of carbon nanotube surface modification on thermal properties of copper-CNT composites [J].
Firkowska, Izabela ;
Boden, Andre ;
Vogt, Anna-Maria ;
Reich, Stephanie .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (43) :17541-17546
[8]   Filler geometry and interface resistance of carbon nanofibres: Key parameters in thermally conductive polymer composites [J].
Gharagozloo-Hubmann, Kati ;
Boden, Andre ;
Czempiel, Gregor J. F. ;
Firkowska, Izabela ;
Reich, Stephanie .
APPLIED PHYSICS LETTERS, 2013, 102 (21)
[9]   Thermal properties of the hybrid graphene-metal nano-micro-composites: Applications in thermal interface materials [J].
Goyal, Vivek ;
Balandin, Alexander A. .
APPLIED PHYSICS LETTERS, 2012, 100 (07)
[10]   Enhanced Mechanical Properties of Graphene/Copper Nanocomposites Using a Molecular-Level Mixing Process [J].
Hwang, Jaewon ;
Yoon, Taeshik ;
Jin, Sung Hwan ;
Lee, Jinsup ;
Kim, Taek-Soo ;
Hong, Soon Hyung ;
Jeon, Seokwoo .
ADVANCED MATERIALS, 2013, 25 (46) :6724-6729