Matching Realization of Higher Rank in the Quantum Weyl Algebra

被引:0
作者
Hu, Nai Hong
Wang, Shen You [1 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum divided power algebra; quantum differential operators; quantum Weyl algebra; Lusztig symmetries; matching realization; REPRESENTATIONS;
D O I
10.1007/s10114-014-3721-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, we further realize the higher rank quantized universal enveloping algebra U-q(sl(n+1))as certain quantum differential operators in the quantum Weyl algebra W-q(2n) defined over the quantum divided power algebra A(q)(n) of rank n. We give the quantum differential operators realization for both the simple root vectors and the non-simple root vectors of U-q(sl(n+1)). The nice behavior of the quantum root vectors formulas under the action of the Lusztig symmetries once again indicates that our realization model is naturally matched.
引用
收藏
页码:1674 / 1688
页数:15
相关论文
共 17 条
[1]   On the classification of finite-dimensional pointed Hopf algebras [J].
Andruskiewitsch, Nicolas ;
Schneider, Hans-Juergen .
ANNALS OF MATHEMATICS, 2010, 171 (01) :375-417
[2]  
Ding J., 1994, PROGR MATH, V124, P127
[3]   Q-ANALOGS OF CLIFFORD AND WEYL ALGEBRAS - SPINOR AND OSCILLATOR REPRESENTATIONS OF QUANTUM ENVELOPING-ALGEBRAS [J].
HAYASHI, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 127 (01) :129-144
[4]   Quantizations of generalized-Witt algebra and of Jacobson-Witt algebra in the modular case [J].
Hu, Naihong ;
Wang, Xiuling .
JOURNAL OF ALGEBRA, 2007, 312 (02) :902-929
[5]   Twists and quantizations of Cartan type S Lie algebras [J].
Hu, Naihong ;
Wang, Xiuling .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (06) :1205-1222
[6]   Quantum divided power algebra, q-derivatives, and some new quantum groups [J].
Hu, NH .
JOURNAL OF ALGEBRA, 2000, 232 (02) :507-540
[7]  
Hu NH, 1999, ALGEBR COLLOQ, V6, P51
[8]  
Jantzen J.C., 1996, Graduate Studies in Mathematics, V6
[9]  
Kassel C., 1995, GRADUATE TEXT MATH, V155
[10]  
Lusztig G., 1993, Introduction to quantum groups, V110