Facile Synthesis of Nanosheet-Structured V2O5 with Enhanced Electrochemical Performance for High Energy Lithium-Ion Batteries

被引:7
|
作者
Liang, Shuquan [1 ]
Qin, Mulan [1 ]
Tang, Yan [1 ,2 ]
Zhang, Qing [3 ]
Li, Xilin [1 ]
Tan, Xiaoping [1 ,2 ]
Pan, Anqiang [1 ]
机构
[1] Cent S Univ, Sch Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Minist Educ, Key Lab, Changsha, Hunan, Peoples R China
[3] Cent S Univ, Sch Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion batteries; nano-structure; vanadium pentoxide; cycling stability; cathode; CATHODE MATERIALS; HIGH-CAPACITY; TEMPERATURE; NANOFIBERS;
D O I
10.1007/s12540-014-5025-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanosheet-structured vanadium pentoxide (V2O5) has been fabricated by a sol-gel method. As revealed by the TEM, the as-synthesized V2O5 crystallites are composed of layer-by-layer stacked nanosheets. As a cathode material for lithium batteries, it exhibits much better electrochemical performance than the starting commercial V2O5 powders. A high specific discharge capacity of 264 mA h g(-1) can be obtained for the nanosheet-structured electrodes, which retains the capacity of 90% after 50 cycles. However, the commercial V2O5 only delivers a specific discharge capacity of 206 mA h g(-1) with a capacity retention of 64% after 50 cycles. Moreover, the nanosheet-structured V2O5 electrodes show much-improved C-rate capability. The superior cycling performance demonstrates that the nanosheet-structured V2O5 is a promising cathode material in lithium-ion battery applications.
引用
收藏
页码:983 / 988
页数:6
相关论文
共 50 条
  • [1] Facile synthesis of nanosheet-structured V2O5 with enhanced electrochemical performance for high energy lithium-ion batteries
    Shuquan Liang
    Mulan Qin
    Yan Tang
    Qing Zhang
    Xilin Li
    Xiaoping Tan
    Anqiang Pan
    Metals and Materials International, 2014, 20 : 983 - 988
  • [2] Facile synthesis of V2O5 nanoparticles as a capable cathode for high energy lithium-ion batteries
    Zhu, Kai
    Meng, Yuan
    Qiu, Hailong
    Gao, Yu
    Wang, Chunzhong
    Du, Fei
    Wei, Yingjin
    Chen, Gang
    Wang, Chunzhong
    Chen, Gang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 650 : 370 - 373
  • [3] Facile Synthesis of Hollow V2O5 Microspheres for Lithium-Ion Batteries with Improved Performance
    Fei, Hailong
    Wu, Peng
    He, Liqing
    Li, Haiwen
    INORGANICS, 2024, 12 (02)
  • [4] Facile Synthesis of V2O5 Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries
    Zhang, Xingyuan
    Wang, Jian-Gan
    Liu, Huanyan
    Liu, Hongzhen
    Wei, Bingqing
    MATERIALS, 2017, 10 (01)
  • [5] Electrochemical performance of the nanostructured biotemplated V2O5 cathode for lithium-ion batteries
    Pomerantseva, Ekaterina
    Gerasopoulos, Konstantinos
    Chen, Xinyi
    Rubloff, Gary
    Ghodssi, Reza
    JOURNAL OF POWER SOURCES, 2012, 206 : 282 - 287
  • [6] Electrochemical properties and facile preparation of hollow porous V2O5 microspheres for lithium-ion batteries
    Xue, Lichun
    Li, Yueqing
    Lin, Wentao
    Chen, Feiming
    Chen, Guichan
    Chen, Dengjie
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 638 : 231 - 241
  • [7] Enhanced electrochemical performance of electrospun V2O5 nanotubes as cathodes for lithium ion batteries
    Liu, Yindan
    Guan, Dayong
    Gao, Guohua
    Liang, Xing
    Sun, Wei
    Zhang, Kun
    Bi, Wenchao
    Wu, Guangming
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 726 : 922 - 929
  • [8] Facile Preparation of V2O5 Hollow Microspheres with Mesoporous on the Shell and Their Electrochemical Properties for Lithium-Ion Batteries
    Dong, Xuelu
    Dong, Fangyuan
    Zhu, Keke
    Li, Haibo
    Zeng, Suyuan
    Cui, Chuansheng
    Fu, Chonggang
    Wang, Lei
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (05)
  • [9] V2O5 layered nanofibers as high-performance cathode for lithium-ion batteries
    Song, Lijie
    Liang, Fangan
    Zou, Zhengguang
    Zhang, Shuchao
    Jia, Shengkun
    Nong, Jinxia
    Zheng, Rong
    Wang, Yunjie
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2024, 35 (24)
  • [10] Synthesis of V2O5 nanoparticles: cathode materials for lithium-ion batteries
    Nagaraju, G.
    Jayalakshmi, T.
    Ashok, S.
    Manjunath, K.
    BULLETIN OF MATERIALS SCIENCE, 2019, 42 (03)