Quantum-dot gain without inversion: Effects of dark plasmon-exciton hybridization

被引:47
|
作者
Zhao, Dongxing [1 ]
Gu, Ying [1 ,2 ]
Wu, Jiarui [1 ]
Zhang, Junxiang [3 ]
Zhang, Tiancai [3 ]
Gerardot, Brian D. [4 ]
Gong, Qihuang [1 ,2 ]
机构
[1] Peking Univ, Dept Phys, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[2] Collaborat Innovat Ctr Quantum Matter, Beijing, Peoples R China
[3] Shanxi Univ, Inst Optoelect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan, Peoples R China
[4] Heriot Watt Univ, SUPA, Inst Photon & Quantum Sci, Edinburgh EH14 4AS, Midlothian, Scotland
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
SEMICONDUCTOR; SYSTEMS; INTERFERENCE; BISTABILITY; MOLECULES; CLUSTERS; SPIN;
D O I
10.1103/PhysRevB.89.245433
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose an initial-state-dependent quantum-dot gain without population inversion in the vicinity of a resonant metallic nanoparticle. The gain originates from the hybridization of a dark plasmon-exciton and is accompanied by efficient energy transfer from the nanoparticle to the quantum dot. This hybridization of the dark plasmon-exciton, attached to the hybridization of the bright plasmon-exciton, strengthens nonlinear light-quantum emitter interactions at the nanoscale, thus the spectral overlap between the dark and the bright plasmons enhances the gain effect. This hybrid system has potential applications in ultracompact tunable quantum devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Gain without inversion in hybrid quantum dot-metallic nanoparticle systems
    Sadeghi, S. M.
    NANOTECHNOLOGY, 2010, 21 (45)
  • [22] Dynamics of exciton localization in CdS/HgS quantum-dot quantum wells
    Yeh, AT
    Cerullo, G
    Banin, U
    Mews, A
    Alivisatos, AP
    Shank, CV
    PHYSICAL REVIEW B, 1999, 59 (07): : 4973 - 4979
  • [23] Plasmon-exciton coupling in neighboring metal nanoparticles and a semiconductor quantum well: Theory
    Kosobukin, V. A.
    SOLID STATE COMMUNICATIONS, 2016, 228 : 43 - 46
  • [24] Plasmon-exciton couplings in Al-CuCl nanoshells and the effects of oxidation
    Yao, Jie
    Ji, WenQian
    Wu, DaJian
    Cheng, Ying
    Liu, XiaoJun
    OPTICS COMMUNICATIONS, 2017, 389 : 310 - 313
  • [25] Array of nanoparticles coupling with quantum-dot: Lattice plasmon quantum features
    Salmanogli, Ahmad
    Gecim, H. Selcuk
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2018, 100 : 54 - 62
  • [26] Advancements and challenges in plasmon-exciton quantum emitters based on colloidal quantum dots and perovskite nanocrystals
    Olejniczak, Adam
    Rakovich, Yury
    Krivenkov, Victor
    MATERIALS FOR QUANTUM TECHNOLOGY, 2024, 4 (03):
  • [27] THE GROUND-STATE ENERGY OF AN EXCITON IN A PARABOLIC QUANTUM-DOT
    ELSAID, M
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1994, 9 (03) : 272 - 274
  • [28] Exciton dissociation and interdot transport in CdSe quantum-dot molecules
    Franceschetti, A
    Zunger, A
    PHYSICAL REVIEW B, 2001, 63 (15):
  • [29] Deciphering exciton-generation processes in quantum-dot electroluminescence
    Deng, Yunzhou
    Lin, Xing
    Fang, Wei
    Di, Dawei
    Wang, Linjun
    Friend, Richard H.
    Peng, Xiaogang
    Jin, Yizheng
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [30] Exciton diffusion and dissociation in organic and quantum-dot solar cells
    He, Dan
    Zeng, Miao
    Zhang, Zhenzhen
    Bai, Yang
    Xing, Guichuan
    Cheng, Hui-Ming
    Lin, Yuze
    SMARTMAT, 2023, 4 (06):