COUNTING VIA ENTROPY: NEW PREASYMPTOTICS FOR THE APPROXIMATION NUMBERS OF SOBOLEV EMBEDDINGS

被引:21
作者
Kuehn, Thomas [1 ]
Mayer, Sebastian [2 ]
Ullrich, Tino [2 ]
机构
[1] Univ Leipzig, Math Inst, D-04109 Leipzig, Germany
[2] Univ Bonn, Inst Numer Simulat, D-53115 Bonn, Germany
关键词
approximation numbers; Sobolev and Gevrey type spaces; rate of convergence; preasymptotics; d-dependence; tractability; BANACH-SPACES; TRACTABILITY;
D O I
10.1137/16M106580X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we reveal a new connection between approximation numbers of periodic Sobolev type spaces, where the smoothness weights on the Fourier coefficients are induced by a (quasi-)norm parallel to.parallel to on R-d, and entropy numbers of the embedding id : l(parallel to.parallel to)(d) -> l(infinity)(d). This connection yields preasymptotic error bounds for approximation numbers of isotropic Sobolev spaces, spaces of analytic functions, and spaces of Gevrey type in L-2 and H-1, which find application in the context of Galerkin methods. Moreover, we observe that approximation numbers of certain Gevrey type spaces behave preasymptotically almost identically to approximation numbers of spaces of dominating mixed smoothness. This observation can be exploited, for instance, for Galerkin schemes for the electronic Schrodinger equation, where mixed regularity is present.
引用
收藏
页码:3625 / 3647
页数:23
相关论文
共 29 条
[1]  
[Anonymous], 1993, LINEAR PARTIAL DIFFE, DOI DOI 10.1142/1550
[2]  
[Anonymous], 1993, COMPUT MATH ANAL SER
[3]  
Cea J, 1964, ANN I FOURIER GRENOB, V14, P345, DOI DOI 10.5802/AIF.181
[4]   Optimal approximation of multivariate periodic Sobolev functions in the sup-norm [J].
Cobos, Fernando ;
Kuhn, Thomas ;
Sickel, Winfried .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (11) :4196-4212
[5]   Approximation of analytic functions in Korobov spaces [J].
Dick, Josef ;
Kritzer, Peter ;
Pillichshammer, Friedrich ;
Wozniakowski, Henryk .
JOURNAL OF COMPLEXITY, 2014, 30 (02) :2-28
[6]  
DUNG D., 2013, FOUND COMPUT MATH, V13, P965
[7]  
EDMUNDS D. E., 2008, CAMBRIDGE TRACTS MAT, V120
[8]  
Gevrey M., 1918, ANN EC NORM SUPER, V35, P129
[9]   OPTIMIZED GENERAL SPARSE GRID APPROXIMATION SPACES FOR OPERATOR EQUATIONS [J].
Griebel, M. ;
Knapek, S. .
MATHEMATICS OF COMPUTATION, 2009, 78 (268) :2223-2257
[10]  
Griebel M., 2007, TEXTS COMPUT SCI ENG, V5