Electromyography-Driven Progressive Assist-as-Needed Control for Lower Limb Exoskeleton

被引:43
作者
Gui, Kai [1 ]
Tan, U-Xuan [2 ]
Liu, Honghai [1 ]
Zhang, Dingguo [3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mech Engn, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China
[2] Singapore Univ Technol & Design, Engn Prod Dev, Singapore, Singapore
[3] Univ Bath, Dept Elect & Elect Engn, Bath BA2 7AY, Avon, England
来源
IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS | 2020年 / 2卷 / 01期
基金
中国国家自然科学基金;
关键词
Adaptive control; electromyography; torque estimation; exoskeleton; rehabilitation;
D O I
10.1109/TMRB.2020.2970222
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper introduces a progressive assist-as-needed (pAAN) controller into our custom-made lower limb exoskeleton system. This control strategy can enhance the active participation of subjects. The controller can dynamically estimate a subject's input (voluntary joint torque) based on electromyography (EMG) without calibrations. The EMG-torque relationship learning is unsupervised. The zero-error estimation of the subject's input is guaranteed by a progressive learning strategy. The adaptive controller adjusts the control inputs of motors to complete predefined trajectories. Online torque estimation and adaptive motion control are both realised in the pAAN controller. Additionally, some practical problems of EMG application, caused by time-varying property of EMG signals and electrode displacement, would be avoided. From the simulation and experimental studies, our pAAN controller can predict the subject's input well, and the exoskeleton helps subjects move precisely. Active participation of subjects is achieved during training.
引用
收藏
页码:50 / 58
页数:9
相关论文
共 32 条
[1]   Robot Assisted Gait Training With Active Leg Exoskeleton (ALEX) [J].
Banala, Sai K. ;
Kim, Seok Hun ;
Agrawal, Sunil K. ;
Scholz, John P. .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2009, 17 (01) :2-8
[2]  
Bernhardt M, 2005, INT C REHAB ROBOT, P536
[3]   ELECTRO-MECHANICAL DELAY IN HUMAN SKELETAL-MUSCLE UNDER CONCENTRIC AND ECCENTRIC CONTRACTIONS [J].
CAVANAGH, PR ;
KOMI, PV .
EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, 1979, 42 (03) :159-163
[4]   Recent trends in assistive technology for mobility [J].
Cowan, Rachel E. ;
Fregly, Benjamin J. ;
Boninger, Michael L. ;
Chan, Leighton ;
Rodgers, Mary M. ;
Reinkensmeyer, David J. .
JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2012, 9
[5]   Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art [J].
Dollar, Aaron M. ;
Herr, Hugh .
IEEE TRANSACTIONS ON ROBOTICS, 2008, 24 (01) :144-158
[6]   Robotic training and spinal cord plasticity [J].
Edgerton, V. Reggie ;
Roy, Roland R. .
BRAIN RESEARCH BULLETIN, 2009, 78 (01) :4-12
[7]  
Hesse S, 2000, J REHABIL RES DEV, V37, P701
[8]  
Huang TH, 2013, IEEE INT C INT ROBOT, P698, DOI 10.1109/IROS.2013.6696427
[9]   Adaptive Impedance Control of a Robotic Orthosis for Gait Rehabilitation [J].
Hussain, Shahid ;
Xie, Sheng Q. ;
Jamwal, Prashant K. .
IEEE TRANSACTIONS ON CYBERNETICS, 2013, 43 (03) :1025-1034
[10]   Estimation of the User's Muscular Torque for an Over-ground Gait Rehabilitation Robot Using Torque and Insole Pressure Sensors [J].
Hwang, Beomsoo ;
Jeon, Doyoung .
INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2018, 16 (01) :275-283