Performance analysis of Vertical Photodetector for Efficient on Chip Optical Interconnect

被引:0
作者
Johari, Anoopshi [1 ]
Bhatnagar, Abhinav [2 ]
Naithani, Sanjeev [3 ]
Kaushik, Brajesh Kumar [4 ]
机构
[1] THDC Inst Hydropower Engn & Technol, Dept Elect & Commun, Tehri Garhwal 249124, Uttarakhand, India
[2] Malaviya Natl Inst Technol, Dept Elect & Commun, Jaipur, Rajasthan, India
[3] Govind Ballabh Pant Inst Engn & Technol, Dept Elect & Commun, Ghurdauri, Uttarakhand, India
[4] Indian Inst Technol, Dept Elect & Commun, Roorkee, Uttarakhand, India
来源
NOVEL OPTICAL SYSTEMS, METHODS, AND APPLICATIONS XXIII | 2020年 / 11483卷
关键词
Optical Interconnect; Photodetector; Finite Difference Time Domain; Optical Wave Guide; FUTURE;
D O I
10.1117/12.2568582
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this work, the optical absorption analysis of the Vertical Photodetector for Optical Interconnect is done. For efficient detection of the signal at the receiver, a photodetector is required for designing of efficient optical interconnects. The light transmitted from the optical source is coupled into the waveguide and received by the detector. Vertical photodetector can be designed using Si and Ge but due to large bandgap, Si can't detect the optical signal efficiently at wavelengths used for optical communication (1.3 to 1.55 mu m). This can be done by using smaller band gap material (Ge) to design a photo-detector. Ge photo-detector offer high performance optical interface solutions. The Optical absorption property of photodetector is analyzed using Lumerical FDTD. It is observed that the absorption rate of vertical Ge-Si photodetector vary in different plane and provides high responsivity at 1.55 mu m because the region of absorption can be made longer to enable full absorption. We investigate the absorption rate of the designed vertical photodetector because the responsivity of the photodetector depends on the absorption rate. The designed structure can be used in on-chip optical interconnect with high absorption rate and low cost.
引用
收藏
页数:7
相关论文
共 26 条
[1]  
Assefa S., 2010, OFC 2010
[2]   Nanoelectronic and nanophotonic interconnect [J].
Beausoleil, Raymond G. ;
Kuekes, Philip J. ;
Snider, Gregory S. ;
Wang, Shih-Yuan ;
Williams, R. Stanley .
PROCEEDINGS OF THE IEEE, 2008, 96 (02) :230-247
[3]   Exploitation of optical interconnects in future server architectures [J].
Benner, AF ;
Ignatowski, M ;
Kash, JA ;
Kuchta, DM ;
Ritter, MB .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2005, 49 (4-5) :755-775
[4]  
Chuang S. L., 2009, Physics of Photonic Devices
[5]   Interconnect limits on gigascale integration (GSI) in the 21st century [J].
Davis, JA ;
Venkatesan, R ;
Kaloyeros, A ;
Beylansky, M ;
Souri, SJ ;
Banerjee, K ;
Saraswat, KC ;
Rahman, A ;
Reif, R ;
Meindl, JD .
PROCEEDINGS OF THE IEEE, 2001, 89 (03) :305-324
[6]   High-speed germanium-on-SOI lateral PIN photodiodes [J].
Dehlinger, G ;
Koester, SJ ;
Schaub, JD ;
Chu, JO ;
Ouyang, QC ;
Grill, A .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (11) :2547-2549
[7]  
Green W., 2010, SEMICON
[8]  
Habata Shinichi, 2004, IPSJ J
[9]   On-chip optical interconnect roadmap: Challenges and critical directions [J].
Haurylau, Mikhail ;
Chen, Guoqing ;
Chen, Hui ;
Zhang, Jidong ;
Nelson, Nicholas A. ;
Albonesi, David H. ;
Friedman, Eby G. ;
Fauchet, Philippe M. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2006, 12 (06) :1699-1705
[10]   The future of wires [J].
Ho, R ;
Mai, KW ;
Horowitz, MA .
PROCEEDINGS OF THE IEEE, 2001, 89 (04) :490-504