On rational solutions of systems of linear differential equations

被引:52
作者
Barkatou, MA [1 ]
机构
[1] Univ Grenoble 1, IMAG, LMC, F-38041 Grenoble 9, France
关键词
D O I
10.1006/jsco.1999.0314
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let K be a field of characteristic zero and M(Y) = N a system of linear differential equations with coefficients in K(x). We propose a new algorithm to compute the set of rational solutions of such a system. This algorithm does not require the use of cyclic vectors. It has been implemented in MAPLE V and it turns out to be faster than cyclic vector computations. We show how one can use this algorithm to give a method to find the set of solutions with entries in K(x)[log x] of M(Y) = N. (C) 1999 Academic Press.
引用
收藏
页码:547 / 567
页数:21
相关论文
共 18 条
[1]  
ABRAMOV AS, 1989, USSR COMP MATH MATH, V28, P7
[2]  
Abramov S. A., 1995, Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, ISSAC '95, P290, DOI 10.1145/220346.220384
[3]  
Abramov S. A., 1991, Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation. ISSAC '91, P267, DOI 10.1145/120694.120735
[4]  
Barkatou M.A., 1989, Contributions a l'etude d'equations differentielles et aux differences dans le champ complexe
[5]  
BARKATOU MA, 1997, 973M RR IMAG LMC
[6]  
BARKATOU MA, 1993, J APPL ALGBR ENG COM, V4, P1
[7]  
BARKATOU MA, 1996, THESIS U CADI AYYAD
[8]  
BARKATOU MA, 1995, P INT S SYMB ALG COM, P302
[9]  
BARKATOU MA, 1997, IN PRESS ALGORITHM C
[10]  
BARKATOU MA, 1997, J SYMB COMPUT, V28, P569