Scalable combustion synthesis of graphene-welded activated carbon for high-performance supercapacitors

被引:184
作者
Li, Chen [1 ]
Zhang, Xiong [1 ,3 ]
Lv, Zhisheng [2 ]
Wang, Kai [1 ]
Sun, Xianzhong [1 ]
Chen, Xiaodong [2 ]
Ma, Yanwei [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Elect Engn, Beijing 100190, Peoples R China
[2] Nanyang Technol Univ, Innovat Ctr Flexible Devices iFLEX, Sch Mat Sci & Engn, Singapore 639798, Singapore
[3] Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China
[4] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Combustion synthesis; Graphene-welded activated carbon; Supercapacitor; Electrical conductivity; Bimodal porosity; HIGH-TEMPERATURE SYNTHESIS; NITROGEN-DOPED CARBON; POROUS CARBON; HIGH-ENERGY; CAPACITANCE PERFORMANCE; HIGH-POWER; PORE-SIZE; OXIDE; CARBONIZATION; MODEL;
D O I
10.1016/j.cej.2021.128781
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
State-of-the-art supercapacitors mainly employ various activated carbons as active electrode materials; however, few of them can simultaneously exhibit superior electrical conductivity and tailored porosity to offer both high energy and power performance. In this work, we demonstrated a scalable combustion synthesis to manufacture graphene-welded activated carbon in CO2 atmosphere using Mg as sacrificial solder. The electrical conductivity of graphene-welded activated carbon reaches 2836 S m-1, and a hierarchical porous structure is achieved via simply changing the starting conditions of combustion synthesis. These appealing attributes guarantee substantially enhanced ion diffusion and electron transport throughout the carbon matrix, thus delivering a superior energy density of 80 Wh kg-1 and high power density of 70 kW kg-1. The scalable combustion synthesis opens a new avenue to produce high-performance activated carbon materials for future energy-storage devices.
引用
收藏
页数:10
相关论文
共 70 条
[1]   Electrochemistry of Graphene and Related Materials [J].
Ambrosi, Adriano ;
Chua, Chun Kiang ;
Bonanni, Alessandra ;
Pumera, Martin .
CHEMICAL REVIEWS, 2014, 114 (14) :7150-7188
[2]   Broccoli-like porous carbon nitride from ZIF-8 and melamine for high performance supercapacitors [J].
Cai, Chenglong ;
Zou, Yongjin ;
Xiang, Cuili ;
Chu, Hailiang ;
Qiu, Shujun ;
Sui, Qingli ;
Xu, Fen ;
Sun, Lixian ;
Shah, Afzal .
APPLIED SURFACE SCIENCE, 2018, 440 :47-54
[3]   Raman Spectroscopy of Graphene Edges [J].
Casiraghi, C. ;
Hartschuh, A. ;
Qian, H. ;
Piscanec, S. ;
Georgi, C. ;
Fasoli, A. ;
Novoselov, K. S. ;
Basko, D. M. ;
Ferrari, A. C. .
NANO LETTERS, 2009, 9 (04) :1433-1441
[4]   Carbon-based supercapacitors for efficient energy storage [J].
Chen, Xuli ;
Paul, Rajib ;
Dai, Liming .
NATIONAL SCIENCE REVIEW, 2017, 4 (03) :453-489
[5]   The path towards sustainable energy [J].
Chu, Steven ;
Cui, Yi ;
Liu, Nian .
NATURE MATERIALS, 2017, 16 (01) :16-22
[6]   Supercapacitors Technical Requirements for New Applications [J].
Conte, M. .
FUEL CELLS, 2010, 10 (05) :806-818
[7]   Highly Electroconductive Mesoporous Graphene Nanofibers and Their Capacitance Performance at 4 V [J].
Cui, Chaojie ;
Qian, Weizhong ;
Yu, Yuntao ;
Kong, Chuiyan ;
Yu, Bo ;
Xiang, Lan ;
Wei, Fei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (06) :2256-2259
[8]   An approach to produce single and double layer graphene from re-exfoliation of expanded graphite [J].
Dhakate, S. R. ;
Chauhan, N. ;
Sharma, S. ;
Tawale, J. ;
Singh, S. ;
Sahare, P. D. ;
Mathur, R. B. .
CARBON, 2011, 49 (06) :1946-1954
[9]   Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors [J].
Duan, Bo ;
Gao, Xiang ;
Yao, Xu ;
Fang, Yan ;
Huang, Liang ;
Zhou, Jun ;
Zhang, Lina .
NANO ENERGY, 2016, 27 :482-491
[10]   Graphene for batteries, supercapacitors and beyond [J].
El-Kady, Maher F. ;
Shao, Yuanlong ;
Kaner, Richard B. .
NATURE REVIEWS MATERIALS, 2016, 1 (07)