Spark plasma sintering of tungsten carbide nanopowders obtained through DC arc plasma synthesis

被引:50
作者
Chuvil'deev, V. N. [1 ]
Blagoveshchenskiy, Yu. V. [2 ]
Nokhrin, A. V. [1 ]
Boldin, M. S. [1 ]
Sakharov, N. V. [1 ]
Isaeva, N. V. [2 ]
Shotin, S. V. [1 ]
Belkin, O. A. [1 ]
Popov, A. A. [1 ]
Smirnova, E. S. [1 ]
Lantsev, E. A. [1 ]
机构
[1] Lobachevsky State Univ Nizhniy Novgorod, Lobachevsky Univ, UNN, Gagarina Ave,23, Nizhnii Novgorod 603950, Russia
[2] RAS, AA Baykov Inst Met & Mat Sci, Leninskii Ave,49, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
Tungsten carbide; Nanopowders; Spark plasma sintering; DC arc thermal plasma synthesis; Grain growth; MECHANICAL-PROPERTIES; WC; CONSOLIDATION; TECHNOLOGY; NANOCRYSTALLINE; MICROSTRUCTURE; DIFFUSION; METALS; OXYGEN; FIELD;
D O I
10.1016/j.jallcom.2017.03.035
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The paper dwells on the research conducted into high-rate consolidation of pure tungsten carbide (WC) nanopowders using the Spark Plasma Sintering technology. Studies included the effect that the original size of WC nanoparticles and their preparation modes have on density, structure parameters, and mechanical properties of tungsten carbide. Samples of high-density nanostructured tungsten carbide characterized by high hardness (up to 31-34 GPa) and improved fracture toughness (4.3-5.2 MPa m(1/2)) were obtained. It has been found that materials that show abnormal grain growth during sintering have lower values of sintering activation energy as compared to materials the structure of which is more stable during high-rate heating. A qualitative model is proposed that explains this effect through the dependence of the grain boundary diffusion coefficient on the grain boundary migration rate. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:547 / 561
页数:15
相关论文
共 50 条
[41]   Methods of compacting nanostructured tungsten–cobalt alloys from Nanopowders obtained by plasma chemical synthesis [J].
Blagoveshchenskiy Y.V. ;
Isayeva N.V. ;
Blagoveshchenskaya N.V. ;
Melnik Y.I. ;
Chuvildeyev V.N. ;
Nokhrin A.V. ;
Sakharov N.V. ;
Boldin M.S. ;
Smirnov Y.S. ;
Shotin S.V. ;
Levinsky Y.V. ;
Voldman G.M. .
Inorganic Materials: Applied Research, 2015, 6 (05) :415-426
[42]   Densification mechanism and mechanical properties of tungsten powder consolidated by spark plasma sintering [J].
Lee, G. ;
McKittrick, J. ;
Ivanov, E. ;
Olevsky, E. A. .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2016, 61 :22-29
[43]   Additive manufacturing-assisted sintering: Low pressure, low temperature spark plasma sintering of tungsten carbide complex shapes [J].
Grippi, Thomas ;
Torresani, Elisa ;
Maximenko, Andrii L. ;
Olevsky, Eugene A. .
CERAMICS INTERNATIONAL, 2024, 50 (19) :37228-37240
[44]   Preparation of mullite/NbN composites through spark plasma sintering [J].
Nasab, Sana Abdollahi ;
Manafi, Sahebali ;
Ghahremani, Davoud .
MATERIALS CHEMISTRY AND PHYSICS, 2022, 285
[45]   Some SiAlONs Prepared from Nanopowders by Spark Plasma Sintering [J].
Zalite, Ilmars ;
Zilinska, Natalja ;
Steins, Ints ;
Krastins, Janis .
NANOCOMPOSITE MATERIALS, 2009, 151 :240-244
[46]   Effect of ZrC nano-powder addition on the microstructure and mechanical properties of binderless tungsten carbide fabricated by spark plasma sintering [J].
Ren, Xiaoyong ;
Peng, Zhijian ;
Wang, Chengbiao ;
Fu, Zhiqiang ;
Qi, Longhao ;
Miao, Hezhuo .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2015, 48 :398-407
[47]   Effect of tungsten carbide addition on the tribological behavior of Astaloy 85Mo powder consolidated via spark plasma sintering [J].
Ordonez, M. F. C. ;
Farias, M. C. M. ;
Machado, I. F. ;
Souza, R. M. .
TRIBOLOGY INTERNATIONAL, 2018, 127 :313-323
[48]   Preliminary investigation on development of functionally graded cemented tungsten carbide with solid lubricant via ball milling and spark plasma sintering [J].
Parihar, Rityuj Singh ;
Setti, Srinivasu Gangi ;
Sahu, Raj Kumar .
JOURNAL OF COMPOSITE MATERIALS, 2018, 52 (10) :1363-1377
[49]   Structure and properties of advanced materials obtained by Spark Plasma Sintering [J].
Chuvildeev, V. N. ;
Panov, D. V. ;
Boldin, M. S. ;
Nokhrin, A. V. ;
Blagoveshchensky, Yu. V. ;
Sakharov, N. V. ;
Shotin, S. V. ;
Kotkov, D. N. .
ACTA ASTRONAUTICA, 2015, 109 :172-176
[50]   Spark plasma sintering of mullite: Relation between microstructure, properties and spark plasma sintering (SPS) parameters [J].
Ghahremani, D. ;
Ebadzadeh, T. ;
Maghsodipour, A. .
CERAMICS INTERNATIONAL, 2015, 41 (05) :6409-6416