Spark plasma sintering of tungsten carbide nanopowders obtained through DC arc plasma synthesis

被引:50
作者
Chuvil'deev, V. N. [1 ]
Blagoveshchenskiy, Yu. V. [2 ]
Nokhrin, A. V. [1 ]
Boldin, M. S. [1 ]
Sakharov, N. V. [1 ]
Isaeva, N. V. [2 ]
Shotin, S. V. [1 ]
Belkin, O. A. [1 ]
Popov, A. A. [1 ]
Smirnova, E. S. [1 ]
Lantsev, E. A. [1 ]
机构
[1] Lobachevsky State Univ Nizhniy Novgorod, Lobachevsky Univ, UNN, Gagarina Ave,23, Nizhnii Novgorod 603950, Russia
[2] RAS, AA Baykov Inst Met & Mat Sci, Leninskii Ave,49, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
Tungsten carbide; Nanopowders; Spark plasma sintering; DC arc thermal plasma synthesis; Grain growth; MECHANICAL-PROPERTIES; WC; CONSOLIDATION; TECHNOLOGY; NANOCRYSTALLINE; MICROSTRUCTURE; DIFFUSION; METALS; OXYGEN; FIELD;
D O I
10.1016/j.jallcom.2017.03.035
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The paper dwells on the research conducted into high-rate consolidation of pure tungsten carbide (WC) nanopowders using the Spark Plasma Sintering technology. Studies included the effect that the original size of WC nanoparticles and their preparation modes have on density, structure parameters, and mechanical properties of tungsten carbide. Samples of high-density nanostructured tungsten carbide characterized by high hardness (up to 31-34 GPa) and improved fracture toughness (4.3-5.2 MPa m(1/2)) were obtained. It has been found that materials that show abnormal grain growth during sintering have lower values of sintering activation energy as compared to materials the structure of which is more stable during high-rate heating. A qualitative model is proposed that explains this effect through the dependence of the grain boundary diffusion coefficient on the grain boundary migration rate. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:547 / 561
页数:15
相关论文
共 50 条
  • [21] Solid solution synthesis of tantalum carbide-hafnium carbide by spark plasma sintering
    Zhang, Cheng
    Gupta, Ankur
    Seal, Sudipta
    Boesl, Benjamin
    Agarwal, Arvind
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2017, 100 (05) : 1853 - 1862
  • [22] Research on Binderless Tungsten Carbide Prepared by Spark Plasma Sintering
    Li, Xiaoqiang
    Xiao, Zhangyi
    Yang, Chao
    Qu, Shengguan
    ADVANCES IN ENGINEERING DESIGN AND OPTIMIZATION, PTS 1 AND 2, 2011, 37-38 : 980 - 984
  • [23] Advanced materials obtained by Spark Plasma Sintering
    Chuvil'deev, V. N.
    Boldin, M. S.
    Nokhrin, A. V.
    Popov, A. A.
    ACTA ASTRONAUTICA, 2017, 135 : 192 - 197
  • [24] Spark plasma sintering of tantalum carbide
    Khaleghi, Evan
    Lin, Yen-Shan
    Meyers, Marc A.
    Olevsky, Eugene A.
    SCRIPTA MATERIALIA, 2010, 63 (06) : 577 - 580
  • [25] Alumina/molybdenum nanocomposites obtained by colloidal synthesis and spark plasma sintering
    Fernandez-Gonzalez, D.
    Suarez, M.
    Pinuela-Noval, J.
    Diaz, L. A.
    Gomez-Rodriguez, C.
    Garcia Quinonez, L. V.
    Borrell, A.
    Fernandez, A.
    CERAMICS INTERNATIONAL, 2023, 49 (06) : 9432 - 9441
  • [26] Sintering of ferritic and austenitic nanopowders using Spark Plasma Sintering
    Mouawad, B.
    Fabregue, D.
    Perez, M.
    Blat, M.
    Delabrouille, F.
    Domain, C.
    Pokor, C.
    METALLURGICAL RESEARCH & TECHNOLOGY, 2014, 111 (05) : 305 - 310
  • [27] Investigation of Aspects of High-Speed Sintering of Plasma-Chemical Nanopowders of Tungsten Carbide with Higher Content of Oxygen
    Lantsev, E. A.
    Malekhonova, N., V
    Tsvetkov, Yu, V
    Blagoveshchensky, Yu, V
    Chuvildeev, V. N.
    Nokhrin, A., V
    Boldin, M. S.
    Andreev, P., V
    Smetanina, K. E.
    Isaeva, N., V
    INORGANIC MATERIALS-APPLIED RESEARCH, 2021, 12 (03) : 650 - 663
  • [28] Investigation of Aspects of High-Speed Sintering of Plasma-Chemical Nanopowders of Tungsten Carbide with Higher Content of Oxygen
    E. A. Lantsev
    N. V. Malekhonova
    Yu. V. Tsvetkov
    Yu. V. Blagoveshchensky
    V. N. Chuvildeev
    A. V. Nokhrin
    M. S. Boldin
    P. V. Andreev
    K. E. Smetanina
    N. V. Isaeva
    Inorganic Materials: Applied Research, 2021, 12 : 650 - 663
  • [29] Activated sintering of tungsten alloys through conventional and spark plasma sintering process
    Senthilnathan, N.
    Annamalai, A. Raja
    Venkatachalam, G.
    MATERIALS AND MANUFACTURING PROCESSES, 2017, 32 (16) : 1861 - 1868
  • [30] Spark plasma sintering processed α-SiAlON bonded tungsten carbide: Densification, microstructure and tribomechanical properties
    Sarkar, Soumya
    Biswas, Mita
    Halder, Rupa
    Bandyopadhyay, Siddhartha
    MATERIALS CHEMISTRY AND PHYSICS, 2020, 248