Spark plasma sintering of tungsten carbide nanopowders obtained through DC arc plasma synthesis

被引:50
作者
Chuvil'deev, V. N. [1 ]
Blagoveshchenskiy, Yu. V. [2 ]
Nokhrin, A. V. [1 ]
Boldin, M. S. [1 ]
Sakharov, N. V. [1 ]
Isaeva, N. V. [2 ]
Shotin, S. V. [1 ]
Belkin, O. A. [1 ]
Popov, A. A. [1 ]
Smirnova, E. S. [1 ]
Lantsev, E. A. [1 ]
机构
[1] Lobachevsky State Univ Nizhniy Novgorod, Lobachevsky Univ, UNN, Gagarina Ave,23, Nizhnii Novgorod 603950, Russia
[2] RAS, AA Baykov Inst Met & Mat Sci, Leninskii Ave,49, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
Tungsten carbide; Nanopowders; Spark plasma sintering; DC arc thermal plasma synthesis; Grain growth; MECHANICAL-PROPERTIES; WC; CONSOLIDATION; TECHNOLOGY; NANOCRYSTALLINE; MICROSTRUCTURE; DIFFUSION; METALS; OXYGEN; FIELD;
D O I
10.1016/j.jallcom.2017.03.035
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The paper dwells on the research conducted into high-rate consolidation of pure tungsten carbide (WC) nanopowders using the Spark Plasma Sintering technology. Studies included the effect that the original size of WC nanoparticles and their preparation modes have on density, structure parameters, and mechanical properties of tungsten carbide. Samples of high-density nanostructured tungsten carbide characterized by high hardness (up to 31-34 GPa) and improved fracture toughness (4.3-5.2 MPa m(1/2)) were obtained. It has been found that materials that show abnormal grain growth during sintering have lower values of sintering activation energy as compared to materials the structure of which is more stable during high-rate heating. A qualitative model is proposed that explains this effect through the dependence of the grain boundary diffusion coefficient on the grain boundary migration rate. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:547 / 561
页数:15
相关论文
共 51 条
[21]  
Kosolapova T. Y., 1986, HDB METALLURGIYA, P928
[22]   Determination of oxygen in W-C-Co nanopowders [J].
Krasovskii, P. V. ;
Blagoveshchenskii, Yu. V. ;
Grigorovich, K. V. .
INORGANIC MATERIALS, 2008, 44 (09) :954-959
[23]   Thermal evolution study of nonmetallic impurities and surface passivation of Cu nanopowders produced via a DC thermal plasma synthesis [J].
Krasovskii, Pavel V. ;
Samokhin, Andrey V. ;
Fadeev, Andrey A. ;
Alexeev, Nikolay V. .
ADVANCED POWDER TECHNOLOGY, 2016, 27 (04) :1669-1676
[24]   Characterization of surface oxide films and oxygen distribution in α-W nanopowders produced in a DC plasma reactor from an oxide feedstock [J].
Krasovskii, Pavel V. ;
Samokhin, Andrey V. ;
Malinovskaya, Olga S. .
POWDER TECHNOLOGY, 2015, 286 :144-150
[25]   XPS study of surface chemistry of tungsten carbides nanopowders produced through DC thermal plasma/hydrogen annealing process [J].
Krasovskii, Pavel V. ;
Malinovskaya, Olga S. ;
Samokhin, Andrey V. ;
Blagoveshchenskiy, Yury V. ;
Kazakov, Valery A. ;
Ashmarin, Artem A. .
APPLIED SURFACE SCIENCE, 2015, 339 :46-54
[26]   The sintering kinetics of ultrafine tungsten carbide powders [J].
Kumar, A. K. Nanda ;
Watabe, M. ;
Kurokawa, K. .
CERAMICS INTERNATIONAL, 2011, 37 (07) :2643-2654
[27]   A new technology platform for the production of electronic grade tantalum nanopowders from tantalum scrap sources [J].
Lessard, Joseph D. ;
Shekhter, Leonid N. ;
Gribbin, Daniel G. ;
Blagoveshchensky, Yuri ;
McHugh, Larry F. .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2015, 48 :408-413
[28]   Abnormal grain growth in cemented carbides - Experiments and simulations [J].
Mannesson, Karin ;
Borgh, Ida ;
Borgenstam, Annika ;
Agren, John .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2011, 29 (04) :488-494
[29]  
McCandlish L. E., 1992, Nanostructured Materials, V1, P119, DOI 10.1016/0965-9773(92)90063-4
[30]   The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method [J].
Munir, ZA ;
Anselmi-Tamburini, U ;
Ohyanagi, M .
JOURNAL OF MATERIALS SCIENCE, 2006, 41 (03) :763-777