The smallest length of eight-dimensional binary linear codes with prescribed minimum distance

被引:12
作者
Bouyukliev, I
Jaffe, DB
Vavrek, V
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Veliko Tarnovo 5000, Bulgaria
[2] Univ Nebraska, Dept Math & Stat, Lincoln, NE 68588 USA
基金
美国国家科学基金会;
关键词
binary linear code; bounds; minimum distance;
D O I
10.1109/18.850690
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let n(8, d) be the smallest integer a for which a binary Linear code of length n, dimension 8, and minimum distance d exists. We prove that n(8, 18) = 42, n(8, 26) = 58, n(8, 28) = 61, n(8, 30) = 65, a(8, 34) = 74, n(8, 36) 77, n(8, 38) = 81, n(8, 42) = 89, and n(8, 60) = 124. After these results, all values of n(8, d) are known.
引用
收藏
页码:1539 / 1544
页数:6
相关论文
共 39 条
[11]   THE LINEAR-PROGRAMMING BOUND FOR BINARY LINEAR CODES [J].
BROUWER, AE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (02) :677-680
[12]   AN UPDATED TABLE OF MINIMUM-DISTANCE BOUNDS FOR BINARY LINEAR CODES [J].
BROUWER, AE ;
VERHOEFF, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (02) :662-677
[13]  
CHEN CL, 1970, IEEE T INFORM THEORY, V16, P359, DOI 10.1109/TIT.1970.1054452
[14]  
DELSARTE P, 1972, PHILIPS RES REP, V27, P272
[15]  
Dodunekov S. N., 1987, Problems of Information Transmission, V23, P38
[16]   AN IMPROVEMENT OF THE GRIESMER BOUND FOR SOME SMALL MINIMUM DISTANCES [J].
DODUNEKOV, SM ;
MANEV, NL .
DISCRETE APPLIED MATHEMATICS, 1985, 12 (02) :103-114
[17]   NEW BOUNDS ON BINARY LINEAR CODES OF DIMENSION 8 [J].
DODUNEKOV, SM ;
HELLESETH, T ;
MANEV, N ;
YTREHUS, O .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1987, 33 (06) :917-919
[18]  
GRIESMER IH, 1960, IBM J RES DEV, V4, P532
[19]  
HEIJNEN PW, 1993, BESTAAT GEEN BINAIRE
[20]   A NEW CLASS OF CODES MEETING THE GRIESMER BOUND [J].
HELLESETH, T ;
VANTILBORG, HCA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1981, 27 (05) :548-555