The smallest length of eight-dimensional binary linear codes with prescribed minimum distance

被引:12
作者
Bouyukliev, I
Jaffe, DB
Vavrek, V
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Veliko Tarnovo 5000, Bulgaria
[2] Univ Nebraska, Dept Math & Stat, Lincoln, NE 68588 USA
基金
美国国家科学基金会;
关键词
binary linear code; bounds; minimum distance;
D O I
10.1109/18.850690
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let n(8, d) be the smallest integer a for which a binary Linear code of length n, dimension 8, and minimum distance d exists. We prove that n(8, 18) = 42, n(8, 26) = 58, n(8, 28) = 61, n(8, 30) = 65, a(8, 34) = 74, n(8, 36) 77, n(8, 38) = 81, n(8, 42) = 89, and n(8, 60) = 124. After these results, all values of n(8, d) are known.
引用
收藏
页码:1539 / 1544
页数:6
相关论文
共 39 条
[1]  
[Anonymous], BINARY LINEAR CODES
[2]  
[Anonymous], NAUTY USERS GUIDE VE
[3]   NOTE ON GRIESMER BOUND [J].
BAUMERT, LD ;
MCELIECE, RJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1973, 19 (01) :134-135
[4]  
Belov B. I., 1974, Problemy Peredaci Informacii, V10, P36
[5]  
BELOV VL, 1974, APTIMIZATION METHODS, P100
[6]   New code parameters from Reed-Solomon subfield codes [J].
Bierbrauer, J ;
Edel, Y .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (03) :953-968
[7]  
Blokh E. L., 1974, Problems of Information Transmission, V10, P218
[8]   On the [162,8,80] codes [J].
Boukliev, I ;
Dodunekov, SM ;
Helleseth, T ;
Ytrehus, O .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (06) :2055-2057
[9]  
BOUKLIEV I, 1998, P 2 INT WORKSH OPT C, P28
[10]  
BOUYUKLIEV I, IN PRESS DISCR MATH