Existence results of positive solutions of Kirchhoff type problems

被引:182
作者
Cheng, Bitao [1 ,2 ]
Wu, Xian [1 ]
机构
[1] Yunnan Normal Univ, Dept Math, Kunming 650092, Yunnan, Peoples R China
[2] Qujing Normal Univ, Dept Math & Informat Sci, Qujing 655011, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Critical point; Positive solution; Kirchhoff type problems; Sobolev inequality; NONTRIVIAL SOLUTIONS; EQUATION;
D O I
10.1016/j.na.2009.03.065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we use variational methods to prove two existence results of positive solutions of the following Kirchhoff type problems {-(a + b integral(Omega)vertical bar del u vertical bar(2)) Delta u = f(x, u), in Omega; u =0, on partial derivative Omega. One deals with the asymptotic behaviors of f near zero and infinity and the other deals with 4-superlinear of f at infinity. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4883 / 4892
页数:10
相关论文
共 17 条
[1]   Positive solutions for a quasilinear elliptic equation of Kirchhoff type [J].
Alves, CO ;
Corrêa, FJSA ;
Ma, TF .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) :85-93
[2]   On the well-posedness of the Kirchhoff string [J].
Arosio, A ;
Panizzi, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :305-330
[3]  
Bernstein S., 1940, Bull. Acad. Sci. URSS. Sr. Math. (Izvestia Akad. Nauk SSSR), V4, P17
[4]  
Cavalcanti MM., 2001, Adv. Differential Equations, V6, P701
[5]  
Cerami G., 1978, Ren. Acad. Sci. Lett. Ist. Lomb, V112, P332
[6]   Some remarks on non local elliptic and parabolic problems [J].
Chipot, M ;
Lovat, B .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (07) :4619-4627
[7]   NONTRIVIAL SOLUTIONS FOR PERTURBATIONS OF THE P-LAPLACIAN ON UNBOUNDED-DOMAINS [J].
COSTA, DG ;
MIYAGAKI, OH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 193 (03) :737-755
[8]   GLOBAL SOLVABILITY FOR THE DEGENERATE KIRCHHOFF EQUATION WITH REAL ANALYTIC DATA [J].
DANCONA, P ;
SPAGNOLO, S .
INVENTIONES MATHEMATICAE, 1992, 108 (02) :247-262
[9]  
Falk Martin, TOURISM MANAGE, V29, P1172, DOI [10.1016/j.tourman.2008.02.021, DOI 10.1016/J.TOURMAN.2008.02.021]
[10]  
HE X, 2008, NONLINEAR ANAL, DOI DOI 10.1016/J.NA.2008.02.011