In-situ Grown SnO2 Nanospheres on Reduced GO Nanosheets as Advanced Anodes for Lithium-ion Batteries

被引:20
|
作者
Wang, Zhen [1 ,2 ]
Chen, Lei [1 ,2 ]
Feng, Jingjie [1 ,2 ]
Liu, Shenghong [1 ,2 ]
Wang, Yang [1 ,2 ]
Fan, Qinghua [1 ,2 ]
Zhao, Yanming [1 ,2 ,3 ]
机构
[1] South China Univ Technol, Dept Phys, Guangzhou 510641, Guangdong, Peoples R China
[2] South China Inst Collaborat Innovat, Dongguan 523808, Peoples R China
[3] South China Univ Technol, Guangdong Prov Key Lab Adv Energy Storage Mat, Guangzhou 510640, Guangdong, Peoples R China
关键词
tin oxide; anode material; reduced graphene oxide; naonosheet; lithium ion battery; NITROGEN-DOPED GRAPHENE; HIGH-PERFORMANCE LITHIUM; ENERGY-STORAGE; SODIUM-ION; TIN OXIDE; COMPOSITE; NANOCRYSTALS; WALLS;
D O I
10.1002/open.201900120
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanostructured tin dioxide (SnO2) has emerged as a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity (1494 mA h g(-1)) and excellent stability. Unfortunately, the rapid capacity fading and poor electrical conductivity of bulk SnO2 material restrict its practical application. Here, SnO2 nanospheres/reduced graphene oxide nanosheets (SRG) are fabricated through in-situ growth of carbon-coated SnO2 using template-based approach. The nanosheet structure with the external layer of about several nanometers thickness can not only accommodate the volume change of Sn lattice during cycling but also enhance the electrical conductivity effectively. Benefited from such design, the SRG composites could deliver an initial discharge capacity of 1212.3 mA h g(-1) at 0.1 A g(-1), outstanding cycling performance of 1335.6 mA h g(-1) after 500 cycles at 1 A g(-1), and superior rate capability of 502.1 mA h g(-1) at 5 A g(-1) after 10 cycles. Finally, it is believed that this method could provide a versatile and effective process to prepare other metal-oxide/reduced graphene oxide (rGO) 2D nanocomposites.
引用
收藏
页码:712 / 718
页数:7
相关论文
共 50 条
  • [31] Graphene-encapsulated mesoporous SnO2 composites as high performance anodes for lithium-ion batteries
    Jiang, Shuhua
    Yue, Wenbo
    Gao, Ziqi
    Ren, Yu
    Ma, Hui
    Zhao, Xinhua
    Liu, Yunling
    Yang, Xiaojing
    JOURNAL OF MATERIALS SCIENCE, 2013, 48 (10) : 3870 - 3876
  • [32] Graphene-encapsulated mesoporous SnO2 composites as high performance anodes for lithium-ion batteries
    Shuhua Jiang
    Wenbo Yue
    Ziqi Gao
    Yu Ren
    Hui Ma
    Xinhua Zhao
    Yunling Liu
    Xiaojing Yang
    Journal of Materials Science, 2013, 48 : 3870 - 3876
  • [33] Graphene double protection strategy to improve the SnO2 electrode performance anodes for lithium-ion batteries
    Zhu, Jian
    Zhang, Guanhua
    Yu, Xinzhi
    Li, Qiuhong
    Lu, Bingan
    Xu, Zhi
    NANO ENERGY, 2014, 3 : 80 - 87
  • [34] Few-layered WSe2 in-situ grown on graphene nanosheets as efficient anode for lithium-ion batteries
    Wang, Xinqiang
    He, Jiarui
    Zheng, Binjie
    Zhang, Wanli
    Chen, Yuanfu
    ELECTROCHIMICA ACTA, 2018, 283 : 1660 - 1667
  • [35] Urchin flower-like SnO2 nanosheets anchored on waste biomass carbon as advanced anode for lithium-ion batteries
    Zhai, Chongyuan
    He, Puqiang
    He, Yapeng
    Wang, Ruyi
    Huang, Hui
    Chen, Buming
    Guo, Zhongcheng
    Wang, Xue
    CERAMICS INTERNATIONAL, 2024, 50 (02) : 3546 - 3555
  • [36] In-situ Grown Sn2 Nanosheets on rGO as an Advanced Anode Materia l for Lithium and Sodium Ion Batteries
    Chen, Hezhang
    Zhang, Bao
    Zhang, Jiafeng
    Yu, Wanjing
    Zheng, Junchao
    Ding, Zhiying
    Li, Hui
    Ming, Lei
    Bengono, D. A. Mifounde
    Chen, Shunan
    Tong, Hui
    FRONTIERS IN CHEMISTRY, 2018, 6
  • [37] In situ synthesis of SnO2 nanosheet/graphene composite as anode materials for lithium-ion batteries
    Liu, Hongdong
    Huang, Jiamu
    Xiang, Chengjie
    Liu, Jia
    Li, Xinlu
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2013, 24 (10) : 3640 - 3645
  • [38] In situ synthesis of SnO2 nanosheet/graphene composite as anode materials for lithium-ion batteries
    Hongdong Liu
    Jiamu Huang
    Chengjie Xiang
    Jia Liu
    Xinlu Li
    Journal of Materials Science: Materials in Electronics, 2013, 24 : 3640 - 3645
  • [39] Hierarchical SnO2 Nanosheets Array as Ultralong-Life Integrated Anode for Lithium-Ion Batteries
    Yuan, Shuang
    Zhao, Yue
    Chen, Weibin
    Zhang, Lina
    Wang, Qiang
    NANO, 2017, 12 (06)
  • [40] Facile synthesis of rGO/SnO2 composite anodes for lithium ion batteries
    Li, Suyuan
    Xie, Wenhe
    Wang, Suiyan
    Jiang, Xinyu
    Peng, Shanglong
    He, Deyan
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (40) : 17139 - 17145