Using the SVM Method for Lung Adenocarcinoma Prognosis Based on Expression Level

被引:0
作者
Li, Tianqin [1 ]
Hu, Mingzhe [2 ]
Zhang, Liao [3 ]
机构
[1] Sun Yat Sen Univ, 135 Xingang Xi Rd, Guangzhou, Guangdong, Peoples R China
[2] Wuhan Univ Sci & Technol, 947 Heping Rd, Wuhan, Hubei, Peoples R China
[3] Imperial Coll London, South Kensington Campus, London SW7 2AZ, England
来源
ICCBB 2018: PROCEEDINGS OF THE 2018 2ND INTERNATIONAL CONFERENCE ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS | 2018年
关键词
Machine learning; SVM; Cancer prognosis; Lung cancer; Expression level; CANCER;
D O I
10.1145/3290818.3290823
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lung cancer is the deadliest cancer in the word, leading to over a quarter of death in the United States in 2017. Gaining precise information on cancer prognosis for patients would greatly benefit their decision making for further treatment plans. While previous studies tend to use histology information and genomic signatures for cancer prognosis, this study explores the possibility of using expression level alone to predict prognosis. Using over 200 patients from publicly available datasets with overall survival length and transcriptomic information, we use support vector machines to predict prognosis. Our result proves the effectiveness of such methodology, encouraging transcriptomic data to be collected for patients routinely if possible given the decreasing cost of RNA-Seq.
引用
收藏
页码:63 / 66
页数:4
相关论文
共 50 条
  • [21] High PHLPP expression is associated with better prognosis in patients with resected lung adenocarcinoma
    Dongqing Lv
    Haihua Yang
    Wei Wang
    Youyou Xie
    Wei Hu
    Minhua Ye
    Xiaofeng Chen
    [J]. BMC Cancer, 15
  • [22] Ion Channel Gene Expression in Lung Adenocarcinoma: Potential Role in Prognosis and Diagnosis
    Ko, Jae-Hong
    Gu, Wanjun
    Lim, Inja
    Bang, Hyoweon
    Ko, Eun A.
    Zhou, Tong
    [J]. PLOS ONE, 2014, 9 (01):
  • [23] High expression of DARS2 indicates poor prognosis in lung adenocarcinoma
    Jiang, Yingfeng
    You, Jianbin
    Wu, Chuncai
    Kang, Yanli
    Chen, Falin
    Chen, Liangyuan
    Wu, Wenbing
    [J]. JOURNAL OF CLINICAL LABORATORY ANALYSIS, 2022, 36 (10)
  • [24] High Expression of PSRC1 Predicts Poor Prognosis in Lung Adenocarcinoma
    Han, Rui
    Guan, Youhong
    Tang, Min
    Li, Min
    Zhang, Binbin
    Fei, Guanghe
    Zhou, Sijing
    Wang, Ran
    [J]. JOURNAL OF CANCER, 2023, 14 (17): : 3321 - 3334
  • [25] Isoform specific gene expression analysis of KRAS in the prognosis of lung adenocarcinoma patients
    Yang, In Seok
    Kim, Sangwoo
    [J]. BMC BIOINFORMATICS, 2018, 19
  • [26] RETRACTED: Screening of Key Prognosis Genes of Lung Adenocarcinoma Based on Expression Analysis on TCGA Database (Retracted Article)
    Shen, Youfeng
    Tang, Xiaoqing
    Zhou, Xiaoqin
    Yi, Yuanxue
    Qiu, Yuan
    Xu, Jian
    Tian, Xingzhong
    [J]. JOURNAL OF ONCOLOGY, 2022, 2022
  • [27] TOP2A Promotes Lung Adenocarcinoma Cells' Malignant Progression and Predicts Poor Prognosis in Lung Adenocarcinoma
    Kou, Fan
    Sun, Houfang
    Wu, Lei
    Li, Baihui
    Zhang, Bailu
    Wang, Xuezhou
    Yang, Lili
    [J]. JOURNAL OF CANCER, 2020, 11 (09): : 2496 - 2508
  • [28] RB and Prognosis in Resected Lung Adenocarcinoma
    Collisson, Eric A.
    [J]. CLINICAL CANCER RESEARCH, 2015, 21 (11) : 2418 - 2420
  • [29] Identification of hallmarks of lung adenocarcinoma prognosis using whole genome sequencing
    Liu, Li
    Huang, Jiao
    Wang, Ke
    Li, Li
    Li, Yangkai
    Yuan, Jingsong
    Wei, Sheng
    [J]. ONCOTARGET, 2015, 6 (35) : 38016 - 38028
  • [30] Folate Receptor α Expression Level Correlates With Histologic Grade in Lung Adenocarcinoma
    Driver, Brandon R.
    Barrios, Roberto
    Ge, Yimin
    Haque, Abida
    Tacha, David
    Cagle, Philip T.
    [J]. ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2016, 140 (07) : 682 - 685