Using the SVM Method for Lung Adenocarcinoma Prognosis Based on Expression Level

被引:0
作者
Li, Tianqin [1 ]
Hu, Mingzhe [2 ]
Zhang, Liao [3 ]
机构
[1] Sun Yat Sen Univ, 135 Xingang Xi Rd, Guangzhou, Guangdong, Peoples R China
[2] Wuhan Univ Sci & Technol, 947 Heping Rd, Wuhan, Hubei, Peoples R China
[3] Imperial Coll London, South Kensington Campus, London SW7 2AZ, England
来源
ICCBB 2018: PROCEEDINGS OF THE 2018 2ND INTERNATIONAL CONFERENCE ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS | 2018年
关键词
Machine learning; SVM; Cancer prognosis; Lung cancer; Expression level; CANCER;
D O I
10.1145/3290818.3290823
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lung cancer is the deadliest cancer in the word, leading to over a quarter of death in the United States in 2017. Gaining precise information on cancer prognosis for patients would greatly benefit their decision making for further treatment plans. While previous studies tend to use histology information and genomic signatures for cancer prognosis, this study explores the possibility of using expression level alone to predict prognosis. Using over 200 patients from publicly available datasets with overall survival length and transcriptomic information, we use support vector machines to predict prognosis. Our result proves the effectiveness of such methodology, encouraging transcriptomic data to be collected for patients routinely if possible given the decreasing cost of RNA-Seq.
引用
收藏
页码:63 / 66
页数:4
相关论文
共 50 条
[21]   Ion Channel Gene Expression in Lung Adenocarcinoma: Potential Role in Prognosis and Diagnosis [J].
Ko, Jae-Hong ;
Gu, Wanjun ;
Lim, Inja ;
Bang, Hyoweon ;
Ko, Eun A. ;
Zhou, Tong .
PLOS ONE, 2014, 9 (01)
[22]   Expression-based, consistent biomarkers for prognosis and diagnosis in lung cancer [J].
Arroyo, M. ;
Larrosa, R. ;
Gomez-Maldonado, J. ;
Cobo, M. A. ;
Claros, M. G. ;
Bautista, R. .
CLINICAL & TRANSLATIONAL ONCOLOGY, 2020, 22 (10) :1867-1874
[23]   High expression of DARS2 indicates poor prognosis in lung adenocarcinoma [J].
Jiang, Yingfeng ;
You, Jianbin ;
Wu, Chuncai ;
Kang, Yanli ;
Chen, Falin ;
Chen, Liangyuan ;
Wu, Wenbing .
JOURNAL OF CLINICAL LABORATORY ANALYSIS, 2022, 36 (10)
[24]   High Expression of PSRC1 Predicts Poor Prognosis in Lung Adenocarcinoma [J].
Han, Rui ;
Guan, Youhong ;
Tang, Min ;
Li, Min ;
Zhang, Binbin ;
Fei, Guanghe ;
Zhou, Sijing ;
Wang, Ran .
JOURNAL OF CANCER, 2023, 14 (17) :3321-3334
[25]   Isoform specific gene expression analysis of KRAS in the prognosis of lung adenocarcinoma patients [J].
Yang, In Seok ;
Kim, Sangwoo .
BMC BIOINFORMATICS, 2018, 19
[26]   Development and validation of machine learning models for early diagnosis and prognosis of lung adenocarcinoma using miRNA expression profiles [J].
Lin, Lin ;
Bao, Yongxia .
CANCER BIOMARKERS, 2025, 42 (01) :18758592241308756
[27]   TOP2A Promotes Lung Adenocarcinoma Cells' Malignant Progression and Predicts Poor Prognosis in Lung Adenocarcinoma [J].
Kou, Fan ;
Sun, Houfang ;
Wu, Lei ;
Li, Baihui ;
Zhang, Bailu ;
Wang, Xuezhou ;
Yang, Lili .
JOURNAL OF CANCER, 2020, 11 (09) :2496-2508
[28]   RETRACTED: Screening of Key Prognosis Genes of Lung Adenocarcinoma Based on Expression Analysis on TCGA Database (Retracted Article) [J].
Shen, Youfeng ;
Tang, Xiaoqing ;
Zhou, Xiaoqin ;
Yi, Yuanxue ;
Qiu, Yuan ;
Xu, Jian ;
Tian, Xingzhong .
JOURNAL OF ONCOLOGY, 2022, 2022
[29]   RB and Prognosis in Resected Lung Adenocarcinoma [J].
Collisson, Eric A. .
CLINICAL CANCER RESEARCH, 2015, 21 (11) :2418-2420
[30]   Identification of hallmarks of lung adenocarcinoma prognosis using whole genome sequencing [J].
Liu, Li ;
Huang, Jiao ;
Wang, Ke ;
Li, Li ;
Li, Yangkai ;
Yuan, Jingsong ;
Wei, Sheng .
ONCOTARGET, 2015, 6 (35) :38016-38028