Secondary-Sphere Effects in Molecular Electrocatalytic CO2 Reduction

被引:127
作者
Nichols, Asa W. [1 ]
Machan, Charles W. [1 ]
机构
[1] Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA
关键词
inorganic; electrocatalysis; CO2; secondary-sphere; molecular; REACTIONS. CYCLIC VOLTAMMETRY; DINUCLEAR RHENIUM COMPLEX; PROTON RESPONSIVE LIGAND; MONONUCLEAR NONHEME IRON; BULKY BIPYRIDINE LIGANDS; WEAK BRONSTED ACIDS; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; H-BOND; PHOTOCHEMICAL REDUCTION;
D O I
10.3389/fchem.2019.00397
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The generation of fuels and value-added chemicals from carbon dioxide (CO2) using electrocatalysis is a promising approach to the eventual large-scale utilization of intermittent renewable energy sources. To mediate kinetically and thermodynamically challenging transformations of CO2, early reports of molecular catalysts focused primarily on precious metal centers. However, through careful ligand design, earth-abundant first-row transition metals have also demonstrated activity and selectivity for electrocatalytic CO2 reduction. A particularly effective and promising approach for enhancement of reaction rates and efficiencies of molecular electrocatalysts for CO2 reduction is the modulation of the secondary coordination sphere of the active site. In practice, this has been achieved through the mimicry of enzyme structures: incorporating pendent Bronsted acid/base sites, charged residues, sterically hindered environments, and bimetallic active sites have all proved to be valid strategies for iterative optimization. Herein, the development of secondary-sphere strategies to facilitate rapid and selective CO2 reduction is reviewed with an in-depth examination of the classic [Fe(tetraphenylporphyrin)](+), [Ni(cyclam)](2+), Mn(bpy)(CO)(3)X, and Re(bpy)(CO)(3)X (X = solvent or halide) systems, including relevant highlights from other recently developed ligand platforms.
引用
收藏
页数:19
相关论文
共 147 条
[1]   Design of a Catalytic Active Site for Electrochemical CO2 Reduction with Mn(I)-Tricarbonyl Species [J].
Agarwal, Jay ;
Shaw, Travis W. ;
Schaefer, Henry F., III ;
Bocarsly, Andrew B. .
INORGANIC CHEMISTRY, 2015, 54 (11) :5285-5294
[2]  
[Anonymous], ANGEW CHEM
[3]   Determining the Overpotential for a Molecular Electrocatalyst [J].
Appel, Aaron M. ;
Helm, Monte L. .
ACS CATALYSIS, 2014, 4 (02) :630-633
[4]   Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation [J].
Appel, Aaron M. ;
Bercaw, John E. ;
Bocarsly, Andrew B. ;
Dobbek, Holger ;
DuBois, Daniel L. ;
Dupuis, Michel ;
Ferry, James G. ;
Fujita, Etsuko ;
Hille, Russ ;
Kenis, Paul J. A. ;
Kerfeld, Cheal A. ;
Morris, Robert H. ;
Peden, Charles H. F. ;
Portis, Archie R. ;
Ragsdale, Stephen W. ;
Rauchfuss, Thomas B. ;
Reek, Joost N. H. ;
Seefeldt, Lance C. ;
Thauer, Rudolf K. ;
Waldrop, Grover L. .
CHEMICAL REVIEWS, 2013, 113 (08) :6621-6658
[5]   INFRARED SPECTROELECTROCHEMISTRY [J].
ASHLEY, K ;
PONS, S .
CHEMICAL REVIEWS, 1988, 88 (04) :673-695
[6]   Through-Space Charge Interaction Substituent Effects in Molecular Catalysis Leading to the Design of the Most Efficient Catalyst of CO2-to-CO Electrochemical Conversion [J].
Azcarate, Iban ;
Costentin, Cyrille ;
Robert, Marc ;
Saveant, Jean-Michel .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (51) :16639-16644
[7]   EFFECTS OF CO ON THE ELECTROCATALYTIC ACTIVITY OF NI (CYCLAM)(2+) TOWARD THE REDUCTION OF CO2 [J].
BALAZS, GB ;
ANSON, FC .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1993, 361 (1-2) :149-157
[8]   ELECTROCHEMICAL AND STRUCTURAL STUDIES OF NICKEL(II) COMPLEXES OF N-ALKYLATED CYCLAM LIGANDS - X-RAY STRUCTURES OF TRANS-[NI(C14H32N4)(OH2)2]CL2.2H2O AND [NI(C14H32N4)](O3SCF3)2 [J].
BAREFIELD, EK ;
FREEMAN, GM ;
VANDERVEER, DG .
INORGANIC CHEMISTRY, 1986, 25 (04) :552-558
[9]   NICKEL(II) CYCLAM - AN EXTREMELY SELECTIVE ELECTROCATALYST FOR REDUCTION OF CO2 IN WATER [J].
BELEY, M ;
COLLIN, JP ;
RUPPERT, R ;
SAUVAGE, JP .
JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1984, (19) :1315-1316
[10]   The Electronic States of Rhenium Bipyridyl Electrocatalysts for CO2 Reduction as Revealed by X-ray Absorption Spectroscopy and Computational Quantum Chemistry [J].
Benson, Eric E. ;
Sampson, Matthew D. ;
Grice, Kyle A. ;
Smieja, Jonathan M. ;
Froehlich, Jesse D. ;
Friebel, Daniel ;
Keith, John A. ;
Carter, Emily A. ;
Nilsson, Anders ;
Kubiak, Clifford P. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (18) :4841-4844