Auxiliary equation method and new solutions of Klein-Gordon equations

被引:130
作者
Sirendaoreji [1 ]
机构
[1] Inner Mongolia Normal Univ, Coll Math Sci, Hohhot 010022, Inner Mongolia, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.chaos.2005.10.048
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Many new types of exact solutions of an auxiliary ordinary differential equation are introduced. They are used to generate new exact travelling wave solutions of the quadratic and the cubic nonlinear Klein-Gordon equations. This approach is also applicable to a large variety of nonlinear partial differential equations. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:943 / 950
页数:8
相关论文
共 11 条
[1]   New Weierstrass elliptic function solutions of the N-coupled nonlinear Klein-Gordon equations [J].
Chen, Y ;
Yan, ZY .
CHAOS SOLITONS & FRACTALS, 2005, 26 (02) :393-398
[2]   Elliptic equation rational expansion method and new exact travelling solutions for Whitham-Broer-Kaup equations [J].
Chen, Y ;
Wang, Q ;
Li, B .
CHAOS SOLITONS & FRACTALS, 2005, 26 (01) :231-246
[3]   Modified extended tanh-function method for solving nonlinear partial differential equations [J].
Elwakil, SA ;
El-labany, SK ;
Zahran, MA ;
Sabry, R .
PHYSICS LETTERS A, 2002, 299 (2-3) :179-188
[4]   Extended tanh-function method and its applications to nonlinear equations [J].
Fan, EG .
PHYSICS LETTERS A, 2000, 277 (4-5) :212-218
[5]   New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations [J].
Fu, ZT ;
Liu, SK ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 290 (1-2) :72-76
[6]   The periodic wave solutions for the (3+1)-dimensional Klein-Gordon-Schrodinger equations [J].
Li, XY ;
Yang, S ;
Wang, ML .
CHAOS SOLITONS & FRACTALS, 2005, 25 (03) :629-636
[7]   SOLITARY WAVE SOLUTIONS OF NONLINEAR-WAVE EQUATIONS [J].
MALFLIET, W .
AMERICAN JOURNAL OF PHYSICS, 1992, 60 (07) :650-654
[8]   The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations [J].
Parkes, EJ ;
Duffy, BR ;
Abbott, PC .
PHYSICS LETTERS A, 2002, 295 (5-6) :280-286
[9]   New exact travelling wave solutions for the Kawahara and modified Kawahara equations [J].
Sirendaoreji .
CHAOS SOLITONS & FRACTALS, 2004, 19 (01) :147-150
[10]  
SIRENDAOREJI, 2003, SUN J PHYS LETT A, V309, P387