Research of PVDF Energy Harvester Cantilever Parameters for Experimental Model Realization

被引:14
作者
Cepenas, Mindaugas [1 ]
Peng, Bingzhong [1 ]
Andriukaitis, Darius [1 ]
Ravikumar, Chandana [1 ]
Markevicius, Vytautas [1 ]
Dubauskiene, Neringa [1 ]
Navikas, Dangirutis [1 ]
Valinevicius, Algimantas [1 ]
Zilys, Mindaugas [1 ]
Merfeldas, Audrius [1 ]
Hinov, Nikolay [2 ]
机构
[1] Kaunas Univ Technol, Dept Elect Engn, Studentu St 50-438, LT-51368 Kaunas, Lithuania
[2] Tech Univ Sofia, Fac Elect Engn & Technol, Dept Power Elect, BG-1000 Sofia, Bulgaria
关键词
piezoelectric energy harvester; modeling; PVDF; loss factor; Rayleigh damping coefficient; DESIGN; OPTIMIZATION; BEAM;
D O I
10.3390/electronics9122030
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Piezoelectric energy harvesters have been extensively researched for use with wireless sensors or low power consumption electronic devices. Most of the piezoelectric energy harvesters cannot generate enough power for potential applications. In this study, we explore the parameters, including gap and proof mass, that can affect the damping of the cantilever to optimize the design of the energy harvester. A finite analysis is conducted using COMSOL Multiphysics software. Usually, this type of simulation is performed using the loss factor. However, it is known that results from the loss factor produce models that do not fit the experimental data well. In fact, the result of output voltage using the loss factor is 50% higher than the real value, which is due to ignoring the adverse effect of a superimposing mechanical damping of different constituent materials. In order to build a true model, Rayleigh damping coefficients are measured to use in a simulation. This resulted in a closer fit of modeling and experimental data, and a 5 times better output voltage from the optimized energy harvester compared with using the smallest gap and mass.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 40 条
[11]   Increasing the bandwidth of the width-split piezoelectric energy harvester [J].
Dayou, Jedol ;
Liew, W. Y. H. ;
Chow, Man-Sang .
MICROELECTRONICS JOURNAL, 2012, 43 (07) :484-491
[12]  
Erturk A, 2011, PIEZOELECTRIC ENERGY, DOI DOI 10.1002/9781119991151.APP1
[13]   Design, fabrication, and testing of a low frequency MEMS piezoelectromagnetic energy harvester [J].
Fernandes, Egon ;
Martin, Blake ;
Rua, Isabel ;
Zarabi, Sid ;
Debeda, Helene ;
Nairn, David ;
Wei, Lan ;
Salehian, Armaghan .
SMART MATERIALS AND STRUCTURES, 2018, 27 (03)
[14]   Energy Harvesting from Ambient Vibrations and Heat [J].
Guyomar, Daniel ;
Sebald, Gael ;
Pruvost, Sebastien ;
Lallart, Mickael ;
Khodayari, Akram ;
Richard, Claude .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2009, 20 (05) :609-624
[15]   Rotational piezoelectric energy harvester for wearable devices [J].
Hanif, Noor Hazrin Hany Mohamad ;
Mohaideen, Ahmad Jazlan ;
Azam, Huda ;
Rohaimi, Mas Ehsan .
COGENT ENGINEERING, 2018, 5 (01)
[16]   What is the Young's Modulus of Silicon? [J].
Hopcroft, Matthew A. ;
Nix, William D. ;
Kenny, Thomas W. .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2010, 19 (02) :229-238
[17]   Optimizing orientation of piezoelectric cantilever beam for harvesting energy from human walking [J].
Izadgoshasb, Iman ;
Lim, Yee Yan ;
Lake, Neal ;
Tang, Lihua ;
Padilla, Ricardo Vasquez ;
Kashiwao, Tomoaki .
ENERGY CONVERSION AND MANAGEMENT, 2018, 161 :66-73
[18]   Laboratory testing and numerical simulation of piezoelectric energy harvester for roadway applications [J].
Jasim, Abbas ;
Yesner, Greg ;
Wang, Hao ;
Safari, Ahmad ;
Maher, Ali ;
Basily, B. .
APPLIED ENERGY, 2018, 224 :438-447
[19]   Performance improvement of flexible piezoelectric energy harvester for irregular human motion with energy extraction enhancement circuit [J].
Khan, Muhammad Bilawal ;
Kim, Dong Hyun ;
Han, Jae Hyun ;
Saif, Hassan ;
Lee, Hyeonji ;
Lee, Yongmin ;
Kim, Minsun ;
Jang, Eunsang ;
Hong, Seong Kwang ;
Joe, Daniel Juhyung ;
Lee, Tae-Ik ;
Kim, Taek-Soo ;
Lee, Keon Jae ;
Lee, Yoonmyung .
NANO ENERGY, 2019, 58 :211-219
[20]   Resistive Impedance Matching Circuit for Piezoelectric Energy Harvesting [J].
Kong, Na ;
Ha, Dong Sam ;
Erturk, Alper ;
Inman, Daniel J. .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2010, 21 (13) :1293-1302