Characterization of Integrated Optical Strain Sensors Based on Silicon Waveguides

被引:14
作者
Westerveld, Wouter J. [1 ,2 ]
Leinders, Suzanne M. [3 ]
Muilwijk, Pim M. [2 ]
Pozo, Jose [2 ]
van den Dool, Teun C. [2 ]
Verweij, Martin D. [3 ]
Yousefi, Mirvais [4 ]
Urbach, H. Paul [1 ]
机构
[1] Delft Univ Technol, Opt Res Grp, Fac Appl Sci, NL-2628 CK Delft, Netherlands
[2] TNO, NL-2628 CK Delft, Netherlands
[3] Delft Univ Technol, Lab Acoust Wavefield Imaging, Fac Sci Appl, NL-2628 CK Delft, Netherlands
[4] Photon Sensing Solut, NL-1013 EN Amsterdam, Netherlands
关键词
Optical sensors; strain measurement; siliconon-insulator; integrated optics; optical waveguide; microsensors; mechanical sensors; BROAD-BAND SOURCE; INTERROGATION; RESONATOR;
D O I
10.1109/JSTQE.2013.2289992
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Microscale strain gauges are widely used in micro electro-mechanical systems (MEMS) to measure strains such as those induced by force, acceleration, pressure or sound. We propose all-optical strain sensors based on micro-ring resonators to be integrated with MEMS. We characterized the strain-induced shift of the resonances of such devices. Depending on the width of the waveguide and the orientation of the silicon crystal, the linear wavelength shift per applied strain varies between 0.5 and 0.75 pm/microstrain for infrared light around 1550 nm wavelength. The influence of the increasing ring circumference is about three times larger than the influence of the change in waveguide effective index, and the two effects oppose each other. The strong dispersion in 220 nm high silicon sub-wavelength waveguides accounts for a decrease in sensitivity of a factor 2.2 to 1.4 for waveguide widths of 310 nm to 860 nm. These figures and insights are necessary for the design of strain sensors based on silicon waveguides.
引用
收藏
页数:10
相关论文
共 36 条
[1]  
Abdulla S. M. C., 2012, P 9 NAN SENS WORKSH, P80
[2]  
Angad Gaur S. E., 2002, INLEIDING PRACTICUM
[3]   Review: Semiconductor Piezoresistance for Microsystems [J].
Barlian, A. Alvin ;
Park, Woo-Tae ;
Mallon, Joseph R., Jr. ;
Rastegar, Ali J. ;
Pruitt, Beth L. .
PROCEEDINGS OF THE IEEE, 2009, 97 (03) :513-552
[4]   Strain Sensitive Effect in a Triangular Lattice Photonic Crystal Hole-Modified Nanocavity [J].
Bui Thanh Tung ;
Hoang Minh Nguyen ;
Dzung Viet Dao ;
Rogge, Sven ;
Salemink, Huub W. M. ;
Sugiyama, Susumu .
IEEE SENSORS JOURNAL, 2011, 11 (11) :2657-2663
[5]   Strain induced bandgap and refractive index variation of silicon [J].
Cai, Jingnan ;
Ishikawa, Yasuhiko ;
Wada, Kazumi .
OPTICS EXPRESS, 2013, 21 (06) :7162-7170
[6]  
Cazzanelli M, 2012, NAT MATER, V11, P148, DOI [10.1038/nmat3200, 10.1038/NMAT3200]
[7]   Vernier-cascade label-free biosensor with integrated arrayed waveguide grating for wavelength interrogation with low-cost broadband source [J].
Claes, Tom ;
Bogaerts, Wim ;
Bienstman, Peter .
OPTICS LETTERS, 2011, 36 (17) :3320-3322
[8]   Vascular ultrasound for atherosclerosis imaging [J].
de Korte, Chris L. ;
Hansen, Hendrik H. G. ;
van der Steen, Anton F. W. .
INTERFACE FOCUS, 2011, 1 (04) :565-575
[9]  
DUMON P, 2008, FUTURE FAB INT, V25, P29
[10]   Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing [J].
Fan, Li ;
Varghese, Leo T. ;
Xuan, Yi ;
Wang, Jian ;
Niu, Ben ;
Qi, Minghao .
OPTICS EXPRESS, 2012, 20 (18) :20564-20575