Trajectory tracking control of a quadrotor UAV based on sliding mode active disturbance rejection control

被引:45
作者
Zhang, Yong [1 ]
Chen, Zengqiang [1 ]
Sun, Mingwei [1 ]
Zhang, Xinghui [2 ]
机构
[1] Nankai Univ, Coll Artificial Intelligence, Tianjin 300350, Peoples R China
[2] Tianjin Sino German Univ Appl Sci, Tianjin 300350, Peoples R China
来源
NONLINEAR ANALYSIS-MODELLING AND CONTROL | 2019年 / 24卷 / 04期
基金
中国国家自然科学基金;
关键词
sliding mode control; active disturbance rejection control (ADRC); extended state observer (ESO); quadrotor UAV; trajectory tracking control;
D O I
10.15388/NA.2019.4.4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes a sliding mode active disturbance rejection control scheme to deal with trajectory tracking control problems for the quadrotor unmanned aerial vehicle (UAV). Firstly, the differential signal of the reference trajectory can be obtained directly by using the tracking differentiator (TD), then the design processes of the controller can be simplified. Secondly, the estimated values of the UAV's velocities, angular velocities, total disturbance can be acquired by using extended state observer (ESO), and the total disturbance of the system can be compensated in the controller in real time, then the robustness and anti-interference capability of the system can be improved. Finally, the sliding mode controller based on TD and ESO is designed, the stability of the closed-loop system is proved by Lyapunov method. Simulation results show that the control scheme proposed in this paper can make the quadrotor track the desired trajectory quickly and accurately.
引用
收藏
页码:545 / 560
页数:16
相关论文
共 31 条
[21]   Robust back-stepping output feedback trajectory tracking for quadrotors via extended state observer and sigmoid tracking differentiator [J].
Shao, Xingling ;
Liu, Jun ;
Wang, Honglun .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 104 :631-647
[22]  
Tian CL, 2016, CHIN CONTR CONF, P10581, DOI 10.1109/ChiCC.2016.7555034
[23]   An adaptive trajectory tracking control of four rotor hover vehicle using extended normalized radial basis function network [J].
ul Amin, Rooh ;
Li Aijun ;
Khan, Muhammad Umer ;
Shamshirband, Shahaboddin ;
Kamsin, Amirrudin .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 83 :53-74
[24]  
Wang CL, 2016, CHIN CONT DECIS CONF, P5860, DOI 10.1109/CCDC.2016.7532046
[25]   Adaptive Neural Output-Feedback Control for a Class of Nonlower Triangular Nonlinear Systems With Unmodeled Dynamics [J].
Wang, Huanqing ;
Liu, Peter Xiaoping ;
Li, Shuai ;
Wang, Ding .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (08) :3658-3668
[26]   Robust Fuzzy Adaptive Tracking Control for Nonaffine Stochastic Nonlinear Switching Systems [J].
Wang, Huanqing ;
Liu, Peter Xiaoping ;
Niu, Ben .
IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (08) :2462-2471
[27]  
Zeghlache Samir., 2012, Archives of Control Sciences, V22, P315, DOI DOI 10.2478/v10170-011-0027-x
[28]   Autonomous Flight Control of a Nano Quadrotor Helicopter in a GPS-Denied Environment Using On-Board Vision [J].
Zhang, Xu ;
Xian, Bin ;
Zhao, Bo ;
Zhang, Yao .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (10) :6392-6403
[29]   Modeling and adaptive tracking for stochastic nonholonomic constrained mechanical systems [J].
Zhang, Zhongcai ;
Wu, Yuqiang .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2016, 21 (02) :166-184
[30]   Fuzzy-Approximation-Based Adaptive Output-Feedback Control for Uncertain Nonsmooth Nonlinear Systems [J].
Zhao, Xudong ;
Wang, Xinyong ;
Zong, Guangdeng ;
Li, Hongmin .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2018, 26 (06) :3847-3859